

Lewis Central Community School District High School Rooftop Unit Replacement

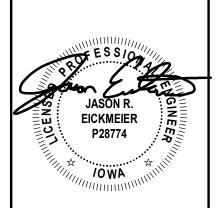
3504 Harry Langdon Blvd. Council Bluffs, IA 51503

Project Manual

October 30, 2025

MEI PROJECT NO.: 25336

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.


Ster M. Farmylon

10/30/2025 (date)

My license renewal date is 12/31/2025

Pages or sheets covered by this seal:

Division 26

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of lower

10/30/2025 (date)

2005

My license renewal date is 12/31/2025

Pages or sheets covered by this seal:

Division 21-23 and 019133.

SIGN & DATE:

GREGORY S HITECT OTT A CONTROL OF THE CONTROL OF TH

ONLY THESE COPIES OF THIS DOCUMENT SIGNED IN CONTRASTING INK COLOR ARE TO BE CONSIDERED CERTIFIED OFFICIAL COPIES PER IOWA ADMINISTRATION CODE 554D. I HEREBY CERTIFY THAT THE PORTION OF THIS TECHNICAL SUBMISSION DESCRIBED BELOW WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND RESPONSIBLE CHARGE. I AM A DULY REGISTERED PROFESSIONAL ARCHITECT UNDER ITHE LAWS OF THE STATE OF IOWA.

PRINTED NAME: GREGORY S. STIEREN

THINTED IVAIVE: GILEGOTT 6: 6TIEF

LICENSE NUMBER: 07744

MY LICENSE RENEWAL DATE IS JUNE 30: 2027

PAGES/ SHEETS/ DIVISIONS COVERED BY THIS SEAL:

Divisions 02, 07, and 09

Specifications for:

Lewis Central Community School District High School Rooftop Unit Replacement 3504 Harry Langdon Blvd. Council Bluffs, IA 51503

Owner

Lewis Central Community School District 4121 Harry Langdon Blvd Council Bluffs, IA 51053

Owner Representative

Project Advocates 1313 Cumming Street Omaha, NE 68102 Contact: Brett Wallace

Phone: (712) 355-8261

Email: <u>brett@project-advocates.com</u>

Mechanical / Electrical Engineers

Morrissey Engineering 4940 North 118th Street Omaha, NE 68164 Phone: (402) 491-4144

Fax: (402) 491-4146

Mechanical Contact: Brad Shaner, P.E. Email: bshaner@morrisseyengineering.com

Electrical Contact: Steve Farrington, P.E.

Email: <u>sfarrignton@morrisseyengineering.com</u>

Division Section Title Pages

GENERAL / BIDDING INFORMATION

SEALS & SIGNATURES
COVER SHEET
CONTACTS
TABLE OF CONTENTS
INVITATION TO BIDDERS
BID FORM
AIA DOCUMENT A104-2017 EXAMPLE CONTRACT

DIVISION 01

019133 COMMISSIONING

DIVISION 02 – EXISTING CONDITIONS

024100 DEMOLITION

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

075323 EPDM THERMOSET SINGLE-PLY ROOFING

DIVISION 09 – FINISHES

092116 GYPSUM BOARD ASSEMBLIES 095100 ACOUSTICAL CEILINGS 099123 INTERIOR PAINTING

DIVISION 23 – MECHANICAL

210100 GENERAL REOUIREMENTS FOR FIRE SUPPRESSION 211000 WATER-BASED FIRE-SUPPRESSION SYSTEMS 220523 VALVES FOR PLUMBING PIPE INSULATION FOR PLUMBING 220720 221116 WATER DISTRIBUTION PIPING 221319 PLUMBING SPECIALTIES 230100 GENERAL REQUIREMENTS FOR MECHANICAL SYSTEMS 230500 BASIC MECHANICAL MATERIALS AND METHODS 230505 BASIC MECHANICAL PIPING MATERIALS AND METHODS 230523 VALVES FOR HVAC TESTING, ADJUSTING, AND BALANCING 230593 230700 **DUCT INSULATION** 230720 PIPE INSULATION FOR HVAC 230900 HVAC INSTRUMENTATION AND CONTROL

SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

231123 FUEL GAS PIPING

230993

232113 HYDRONIC PIPING

232123 HYDRONIC PUMPS

233113 METAL DUCTS AND ACCESSORIES

237313	MODULAR	OUTDOOR	AIR-HANDI	LING UNIT

237313 ROOFTOP AIR HANDLING UNITS

DIVISION 26 – ELECTRICAL

260100	GENERAL REQUIREMENTS FOR ELECTRICAL SYSTEMS
260500	BASIC ELECTRICAL MATERIALS AND METHODS
262416	PANELBOARDS
262726	WIRING DEVICES
268100	FIRE ALARM

PLAN DRAWINGS

CS	COVERSHEET
A0.00 AD1.01 AD1.02 A1.01 A1.02 A1.03	ARCHITECTURAL COVER SHEET DEMOLITION REFLECTED CEILING PLAN – AREA D DEMOLITION REFLECTED CEILING PLAN – AREA C ROOF PLAN – ARCHITECTURAL REFLECTED CEILING PLAN- AREA D REFLECTED CEILING PLAN – AREA C
M0.00 MD1.01 MD1.02 MD1.03 M1.01 M1.02 M1.03 M2.01 M2.02 M3.00 M3.01 M3.02 M4.00	MECHANICAL COVERSHEET ROOF PLAN – MECHANICAL DEMOLITION FLOOR PLAN – AREA D – MECHANICAL DEMOLITION FLOOR PLAN – AREA C – MECHANICAL DEMOLITION ROOF PLAN – MECHANICAL FLOOR PLAN – AREA D – HVAC FLOOR PLAN – AREA C – HVAC FLOOR PLAN – AREA D – HVAC PIPING FLOOR PLAN – AREA C – HVAC PIPING MECHANICAL DETAILS MECHANICAL CONTROL DIAGRAMS MECHANICAL CONTROL DIAGRAMS MECHANICAL SCHEDULES
E0.00 ED1.00 ED1.01 E1.01	ELECTRICAL COVER SHEET FLOOR PLAN – ELECTRICAL DEMOLITION ROOF PLAN – ELECTRICAL DEMOLITION ROOF PLAN – ELECTRICAL

LEWIS CENTRAL COMMUNITY SCHOOL DISTRICT

Date: October 30, 2025

Lewis Central Community Schools (hereinafter referred to as "the District" or "LC") invites bids on:

High School Rooftop Unit Replacement Council Bluffs, IA

Bids are to be made on the bid form enclosed. One completed copy of the bid form is to be returned to the School District signed by the Bidder.

Any questions concerning clarification of this bid should be directed to:

Brad Shaner Morrissey Engineering 4940 North 118th Street Omaha, Nebraska 68164 Phone: (402) 491-4144

bshaner@morrisseyengineering.com

The School District reserves the right to accept or reject any or all bids or any part thereof and to waive any and all technicalities and irregularities should it deem to be in the best interest of the District to do so.

BIDS ARE DUE: 2:00 P.M. (CT), THURSDAY, November 20, 2025

Submit bids in a sealed envelope marked:

BID ENCLOSED High School Rooftop Units Replacement

And addressed as follows:

Dr. Brent Hoesing
Superintendent
Lewis Central Community School District
4121 Harry Langdon Blvd
Council Bluffs, IA 51053

Bidding documents may be examined at the office of the Engineer,

Morrissey Engineering 4940 North 118th Street Omaha, Nebraska 68164

and at the following exchanges after October 30, 2025:

F.W. DODGE CORPORATION, 11422 Miracle Hills Dr., Suite 206, Omaha, NE 68154 OMAHA BUILDERS EXCHANGE, 4159 So. 94th Street, Omaha, NE 68127 Lincoln Builder's Bureau, 5910 South 58th Street, Suite C, Lincoln, NE 68516 A & D's Virtual Plan Room, http://www.adtechplans.com/ Master Builders of Iowa Planroom

Bidders may obtain Bidding Documents at the office of the printer,

A & D Technical Supply 4320 S 89th Street Omaha, NE, 68127 (402) 592-4950

Documents will be available between the hours of 8:00 a.m. and 12:00 noon and 1:00 p.m. and 5:00 p.m., Monday through Friday. All bidders who require hard copies of bid documents shall place an order directly with A & D Technical Supply and shall pay all costs associated with printing and if applicable, all shipping costs. Only full and complete sets will be printed - partial set orders are not allowed. Hard copy bid documents do not need to be returned as no refund will be issued.

PART 1 - BIDDING INFORMATION

1.1 SCOPE OF THE PROJECT

Lewis Central Community School District wishes to replace four existing rooftop units, one rooftop air handling unit and associated controls at the High School. The District will directly contract commissioning with a third party. The mechanical contractor shall cooperate with the Commissioning Authority to complete all commissioning activities.

1.2 INFORMATION TO BIDDERS

Bids must be prepared on the attached bid form, with all required information provided, and submitted in a sealed opaque envelope with the bid name and the date and time of the deadline for submitting bids noted on the exterior of the envelope. The bid must include the bid bond and all attachments required by the bid documents. **E-mail, facsimile or telephone bids will not be accepted**. Any incomplete bid or bid not complying with the bidding documents may be rejected by the School District. Any bid received after the deadline for submission of bids will be rejected and returned to the bidder unopened. The School District's clock, maintained in the Service Center shall be the official clock for purposes determining when the deadline for bid submission has been reached.

1.3 BID BOND

A certified check payable to the Lewis Central Community School District Board of Education or satisfactory Bid Bond executed by the bidder and acceptable sureties in an amount equal to five percent (5%) of the amount of the bid shall be submitted with each bid. Check or Bid Bond will be retained as liquidated damages in the event the successful bidder fails to furnish the required performance bond, insurance certificate, or sign the Contract within ten (10) days after notification of award. If bid security is not received with the bid, the bid will not be considered.

1.4 PREBID MEETING

All bidders are highly encouraged to attend a Pre-bid Conference located at the main entrance of The Lewis Central High School, 3504 Harry Langdon Blvd. Council Bluffs, IA 51503 on **Wednesday November 5th**, 2025 at 3:00 PM to familiarize themselves with the site conditions.

1.5 <u>SCHOOL DISTRICT'S RIGHT</u>

The School District reserves the right to accept or reject any or all bids or any part thereof and to waive any and all technicalities and irregularities should it deem to be in the best interest of the District to do so.

Qualification of Bidders: The District may make such investigations as it deems necessary to determine the ability of the bidder to provide the material, and the bidder shall furnish to the District all such information and data for this purpose as the District may request. The District reserves the right to reject any bid if the evidence submitted by, or investigation of, such bidder fails to satisfy the District that such bidder is properly qualified to carry out the obligations of the plans or specifications and to complete the work contemplated therein. Conditional bids shall not be accepted.

1.6 BID PROPOSAL

Each sheet of the bid proposal must be signed and dated as indicated.

1.7 OPENING OF BIDS

Bids will be opened and read in public at the Lewis Central Operations Building, 3902 Harry Langdon Blvd, Council Bluffs, IA immediately following the close of bidding.

1.8 BID TABULATIONS

Notes may be taken at the public reading of the bid at the specified time and date of the opening or a personal inspection may be made of the bid after award has been made and documents are placed in central files.

1.9 MODIFICATION OR WITHDRAWAL OF BIDS

Prior to the opening of bids, any bidders may modify or withdraw their bids by written

notification to Contact at the Lewis Central Operations building. Such notice shall be submitted in writing, over signature of the bidder. After opening of bids, the bids shall remain open and subject to acceptance by the School District for one hundred twenty (120) days and may not be withdrawn or modified prior to the expiration of such one hundred twenty (120) day period.

1.10 BID AWARD

Neither the issuance of this Invitation to Bid, the preparation and submission of a bid, nor the subsequent receipt and evaluation of any bid by the District or the Board of Education, will commit the Board of Education to award a bid to any bidder. The Board of Education reserves the right to select a bid generated from this invitation to the bidder who presents the lowest responsible bid. The Board of Education reserves the right to waive any and all minor variations and irregularities, and to reject any or all bids and to re-bid the project.

The successful bidder shall be notified by School District of the award of the bid. The Form of Agreement with the successful bidder, as Contractor, will be required to execute is AIA Document A104-2017, "Standard Abbreviated Form of Agreement between Owner and Contractor" (a sample copy is available upon request), with the "General and Supplemental Conditions of the Standard Form of Agreement Between Owner and Contractor for Construction Projects of Limited Scope". The General and Supplemental Conditions are included in this Project Manual. Review both documents for project information and requirements.

1.11 ADDITIONAL INFORMATION

No oral interpretations will be made to any bidder as to the meaning of drawings and specifications or other contract documents. Every request for an interpretation shall be made in writing and addressed to:

Brad Shaner Morrissey Engineering 4940 North 118th Street Omaha, Nebraska 68164 Phone: (402) 491-4144

bshaner@morrisseyengineering.com

PART 2 - GENERAL CONDITIONS

2.1 GENERAL

The Contract between the School District and the Contractor shall consist of the AIA contract issued by the School District, the Information to bidders (Sections 1.1 to 1.11, inclusive), the General Conditions (Sections 2.1 to 2.29, inclusive), the Plans and Specifications, and Contractors Bid Proposal. In the event of a conflict between Contractors Bid Proposal and the remainder of

the documents constituting the Contract, then the remainder of the documents shall control.

All work to be performed by Contractor shall be performed in a good and workmanlike manner and in conformance with the requirements of the Contract.

The specifications provide the minimum requirements for materials, quality, safety, workmanship, construction and finish. Overall dimensions and materials shall be maintained as specified. In general, all equipment to be furnished must be of good quality, new and unused, and shall be constructed as specified and of material as specified. Materials of equal or better quality by another manufacturer may be acceptable but only if submitted as a permitted alternate and approved by the Engineer and School District.

2.2 TYPICAL CONDITIONS AND REQUIREMENTS

Contractor's personnel, sub-contractors, suppliers and delivery staff shall comply with the following:

- 1. There shall be no use of tobacco products (including electronic cigarettes) of any kind, by anyone, at anytime, anywhere on District property. This includes use of same within private or company vehicles while located on District property.
- 2. Contractors shall provide and maintain appropriate, portable toilet facilities at no cost to the District. Contractor's personnel shall not make use of the District's toilet facilities unless by specific permission from the District's Project Manager.
- 3. Contractor's personnel shall remain in the immediate area of their assigned responsibilities within the District's facilities, and are not to travel to other parts of the facility. Personnel engaged in outdoor projects are not to enter the District's buildings unless required by scope of project or the need to address a medical emergency.
- 4. The Contractor shall possess a functional, portable, wireless telephone or other means of electronic communication approved by the District. Phone numbers accessing said means of communication shall be provided to the District at mobilization. Contractor shall provide 24 hour, 7 day per week monitoring of the phone(s), including voice mail, and shall provide a timely response to the District in the event of emergencies.
- 5. Contractor shall maintain a full-time "English Speaking" supervision/foreman on the jobsite during times that work of the Contract is in progress, and shall be available at such times to verbally communicate with the Owner as required.
- 6. When demolishing and remodeling portions of the existing building, the Contractor shall provide temporary dustproof partitions at all openings where dust producing work will be accomplished in order to protect the existing building areas scheduled to remain, and new building areas, if applicable, from dust and dirt. Temporary partitions shall consist of a minimum of wood or metal studs with untaped 1/2-inch gypsum wallboard on the public side (both sides if they are both exposed to the public). Where required for security from the exterior, a minimum of 5/8-inch plywood shall be used in lieu of gypsum wallboard. Where required by the applicable Code Authorities, at hazardous rooms and exit

- enclosures, temporary partitions shall be 5/8-inch fire-taped gypsum wallboard on both sides of wood or metal studs. The Contractor shall also erect temporary walls where excessively noisy activities would severely hamper adjacent District functions as determined by the District.
- 7. During construction, the Contractor shall maintain means of egress, free and unobstructed from the existing exits as required by the applicable Code Authorities and other responsible authorities. Where exits must be maintained and where they exit into exterior construction zones, provide covered enclosed 6-foot wide walkways to provide safe passage out of the construction area. Contractor shall be required to maintain the barricades and/or fencing in an effective and operable condition through completion of the Contract.
- 8. The Contractor shall erect temporary barricades, fences and other protective items as necessary to provide for the general safety of the public during the construction. As a minimum, 4-foot high sound snow fencing with posts at 10-foot centers shall be provided. These minimum requirements may be exceeded by the Contractor at his/her option since he/she is responsible for safety at the project site. Where the fencing is removed to provide temporary access to the site, it shall be reinstalled or replaced to match existing conditions at the end of the construction day.
- 9. Parking for construction personnel may take place on the site as directed by the District, or on adjoining streets where permitted by the City of Council Bluffs, Iowa. Permitted parking on public streets shall not cause inconvenience and disturbance to neighbors and traffic near the site.
- 10. The Contractor shall maintain all site and building areas involved in the Work of this Contract in a clean condition throughout the construction period on a daily basis. The Contractor shall also clean adjoining streets soiled by removal activities as may be required by the governing authorities. In addition, all new walk areas, if applicable, shall be cleaned of all dirt, dust, debris and snow at time of completion of Contract.
- 11. Cutting, fitting, repairing, patching, etc., required whether it be in existing construction, new work place or executing the initial installation, must be done by craftsmen skilled in their respective trades. Repair cut surfaces, and furnish and install like materials to match adjacent surfaces. Paint patched walls and ceilings to match existing corner to corner and floor to ceiling.

2.3 <u>CONTRACTOR'S RESPONSIBILITY</u>

Prior to commencing work, Contractor shall furnish to the School District the bond and insurance certificates required by the Contract. It shall be the responsibility of the Contractor to review and understand the plans and specifications, to check the plans and specifications carefully to insure accurate fit of his particular items of equipment, and to field verify all on-job dimensions.

Contractor shall protect all existing construction. Repair of any damage caused due to work under this Contract is the responsibility of the Contractor and shall be promptly repaired. Contractor shall repair any damage to the property of the School District caused by Contractor or any subcontractor of Contractor.

2.4 RESPONSIBILITIES FOR PROTECTION OF DISTRICT'S EXISTING FACILITIES

Every project shall be governed under the following and statements further defined below: It is the responsibility of the contractor to locate and protect all components and features of the District's facilities. In the event that damage occurs to any component in the course of the work, it shall be the contractor's responsibility to repair or replace the damaged component to the satisfaction of the District, and at no cost to the District.

- 1. Documentation: The District strongly recommends documenting the condition of all finishes and surfaces surrounding and adjacent to the project area(s) before any work commences. Digital photography is ideal for this purpose.
- 2. Concealed utilities and services: Examples include buried, underground public and domestic utilities of all types; underground and surface turf irrigation components, wiring or pipes within walls, chases or raceways. These items are to be located and protected before work commences.
- 3. Public Utilities: The One Call Digger's Hotline service is a free service to all, intended to provide convenient and timely location of underground, public utilities. Contractors are required to notify, coordinate and seek clearance from the utilities within the One Call group for any outdoor project that requires turf and soils to be disturbed, digging, excavation, footings and foundations, post holes, etc.
- 4. Domestic Utilities: Public utilities normally terminate at a meter in the building and then are routed through the building and/or back outside the building to serve certain features. Anywhere beyond the meter point or point of demarcation at the building, they become *domestic* utilities. The One Call service does not locate domestic utilities. The contractor will need to engage a private utility locator for this service.
- 5. District's Knowledge of Concealed Domestic Utility Locations: Through use of as-built plans and historical knowledge of certain personnel, the District may be able to assist with the location of certain concealed components. However, it shall be assumed that this assistance is offered only as a rough estimate of utility location, and in no way relieves the contractor of any responsibility if a component is damaged. Contractor remains responsible to repair or replace, and at no cost to the District.

6. The Contractor shall be responsible for damage to existing materials and surfaces resulting from work of this Contract, including, but not limited to existing lawn areas and landscaping, and shall restore such materials and surfaces, if damaged, to their original condition, as determined by the District.

2.5 WORK RESTRICTIONS

Work to take place while school is in session with staff and students present. Contractor shall cooperate with Owner during construction operations to minimize conflicts with Owner's activities in the building.

2.6 SHOP DRAWINGS

Unless otherwise noted, submit a PDF of shop drawing and product data for review via email to apullmann@morrisseyengineering.com for approval before fabrication or ordering equipment. The Engineer will not be responsible for or accept any material that is not constructed in conformity with the approved shop drawings and specifications. In order to expedite the shop drawing process apparent low bidder should consider working on shop drawings immediately after bid opening. The Engineer will review shop drawings as soon as reasonably practical after they are submitted.

2.7 CIVIL RIGHTS

The Contractor and subcontractors shall agree to comply with Title VI of the Civil Rights Act of 1964 (P.L.88-352) as amended and all requirements imposed by or pursuant to the Regulations of the Department of Education (34 C.F.R. Part 100) issued pursuant to that title, to the end that, in accordance with Title VI of the Act and Regulation, no person in the United States shall, on the grounds of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity for which the School District receives Federal financial assistance from the Department: and hereby gives assurance that the Contractor will immediately take any measures necessary to effectuate this agreement. The Contractor further agrees to comply with all applicable requirements of sate and local laws, ordinances, and regulations regarding nondiscrimination in employment.

2.8 NEW EMPLOYEE WORK ELIGIBILITY VERIFICATION

Pursuant to Neb. Rev. Stat. section 4-114, bidder is required to use a federal immigration verification system to determine the work eligibility status of new employees physically performing services within the State of Iowa. A federal immigration verification system means the electronic verification of the work authorization program authorized by the Illegal Immigration Reform and Immigrant Responsibility Act of 1996, known as the E-Verify Program, or an equivalent program designated by the United States Department of Homeland Security or other federal agency authorized to verify the work eligibility status of a newly hired employee. Bidder further agrees that any subcontract it enters into arising out of this work will include a requirement that the subcontractor agrees to use E-Verify or other

to determine the work eligibility of its new employees physically performing services within the State of Iowa.

2.9 PERFORMANCE BOND: CONTRACTOR REQUIRED TO USE ATTACHED FORM

The Contractor shall furnish immediately upon award of the Contract a Contractor's performance, labor and material payment bond for the full and faithful completion of the Contract in a sum equal to the full amount of the Contract price executed by a corporate bonding company licensed to transact such business in the State of Iowa and acceptable to the School District. The expense of such bond shall be borne by the Contractor. If at any time, in the judgement of the School District, a surety on such a bond becomes unable to perform its commitments under such bond, or is otherwise unacceptable to the School District, the Contractor shall furnish a substitute bond, with acceptable surety, within ten (10) calendar days after receipt of written notice to do so. There shall not be a lapse in any bond furnished by Contractor.

2.10 COMPLIANCE WITH LAWS

The Contractor, in performance of the work called for in the Contract documents, will comply with all applicable government laws, ordinances, regulations, and codes.

2.11 INDEMNIFICATION

Bidder shall indemnify and save Lewis Central Community School District harmless from and against any loss, damage, liability and expenses occasioned by, arising out of, any negligent or intentional act by bidder or any of bidder's agents, employee's, and subcontractors.

2.12 QUALITY AND WORKMANSHIP

All work to be performed by the bidder, and subcontractors if applicable, shall be performed in a manner consistent with the highest professional standards and workmanship in the industry and in conformance with the requirements of the Contract. Bidder shall furnish all labor, materials, and equipment necessary for the satisfactory performance and completion of this contract. When not specifically identified in this Invitation to Bid, such materials and equipment shall be of a suitable type and grade for the purpose. All materials, workmanship, and equipment shall be subject to the inspection and approval of the District's Director of Buildings and Grounds, and the District may reject any work that it deems defective or not in compliance with bid specifications. Any damage to District buildings, grounds, equipment, or other real or personal property which is determined by the District's Director of Buildings and Grounds to have been caused by the bidder or bidder's subcontractor's, shall be promptly (and in no event longer than 30 days) repaired at the bidder's expense.

2.13 <u>DEFECTIVE WORK AND WARRANTIES</u>

The School District shall have the right to reject any work that is defective. The Contractor is

held responsible for any repairs due to defects in equipment, material or workmanship for a period of one (1) year from the date of acceptance of the Contractor's work by the School District. All manufacturers' warranties shall be assigned to the School District.

2.14 PERMITS

It shall be the sole responsibility of the contractor and sub-contractors to become aware of the need for, and to obtain the applicable permits, for the work from the authority having jurisdiction, before any work begins. The successful Contractor shall be responsible for securing the necessary permits required to perform the work. The Contractor is responsible for all fees related to obtaining of permits.

The Contractor shall obtain a Hot Work Permit prior to the start of any hot work including, but not limited to; cutting, welding, soldering, or brazing that involve the use of gas or arc welding equipment.

2.15 PROJECT ENGINEER

Morrissey Engineering, Inc. has been engaged by LC as Project Engineer ("Engineer") to assist with the monitoring, coordination, communication, and administration of the project. The Engineer will provide administration of the Contract and shall oversee the performance of the Contract. The Engineer has the authority to reject any work which does not conform to the Contract. Contractor shall not be relieved of Contractor's obligations to perform the Work in accordance with the Contract Documents by the activities of School District or Engineer. "Architect" shall be replaced with "Engineer" in all AIA Contract Documents.

2.16 NO ASSIGNMENT

Contractor shall not assign or transfer the Contract between School District and Contractor, nor any right arising thereunder, nor shall this Contract or any such right be transferred by operation of law.

2.17 PROJECT SCHEDULE

Allow three weeks for Notice to Proceed from School District after bid opening. Contractor shall prepare a project schedule showing project construction timeline and milestones, and submit project schedule immediately after Notice to Proceed. Upon Notice to Proceed, the Contractor shall begin securing all material and equipment necessary to begin construction. Contractor shall be substantially complete no later than close of business July 27th, 2026. The Engineer will make a site visit for substantial completion verification and punch list generation no later than noon on July 30th, 2026. All work on site, including but not limited to, punch list items, clean-up, demobilization, etc. shall be finished to consider the project finally complete. Final completion shall be accomplished no later than July 30, 2026.

2.18 <u>HAZARDOUS MATERIALS</u>

If the contractor encounters any asbestos or other hazardous materials, the Owner shall be notified immediately. Owner will arrange to have hazardous materials removed.

Lewis Central High School 3504 Harry Langdon Blvd. Council Bluffs, IA 51503

Proposal Form for Lewis Central Community School District High School Rooftop Unit Replacement

Bidder agrees to furnish all labor, materials, tools, equipment, services, transportation, supervision and miscellaneous expense required to deliver the equipment specified in PROJECT MANUAL as prepared by Morrissey Engineering, Inc, 4940 North 118th St., Omaha, NE 68164, dated October 30, 2025 for the sum set forth below, subject to all addenda officially issued prior to bidding for the sum of:

Total Lump Sum Bid:
<u>\$</u> .00
Dollars (Amount shown in both figures and words. In case of discrepancy, words shall govern)
Equipment Lead Times
Rooftop Unit Manufacturer and Lead Time
Roof Air Handling Unit Manufacturer and Lead Time
<u>Addenda</u>
Acknowledge receipt of Addenda No
Date
And have included the provisions of these Addenda in my bid. Initials

Subcontractors

Mechanical Contractor	
Temperature Control	
Roofing Contractor	
Electrical	
Other subcontractors required	

To assist the Owner in selecting the contractor, list the subcontractors that will be employed in this

work. Provide Subcontractors Company Name, Address and Phone Number:

<u>Products</u>	<u>Manufacturer</u>	Adjustment In Bid
	_	add / deduct \$
		add / deduct \$
		add / deduct \$
I will complete the p	roject no later than	, 2026
For:		
For:(<i>Comp</i>	any)	
By:	137	
	ed Name)	
By:		
(Signat	ture)	
Date:		

DRAFT AIA Document A104 - 2017

Standard Abbreviated Form of Agreement Between Owner and Contractor

AGREEMENT made as of the « » day of « » in the year « » (In words, indicate day, month and year.)		
BETWEEN the Owner: (Name, legal status, address and other information)	ADDITIONS AND DELETIONS: The author of this document has added information needed for its completion. The author may also have	
and the Contractor: (Name, legal status, address and other information)	revised the text of the original AIA standard form. An Additions and Deletions Report that notes added	
<pre> « » « » « » « »</pre>	report that notes added information as well as revisions to the standard form text is available from the author and should be reviewed. This document has important legal consequences. Consultation with an attorney is encouraged with respect to its completion or modification.	
for the following Project: (Name, location and detailed description)		
<pre> « » « »</pre>		
The Architect: (Name, legal status, address and other information)		
<pre> « » « » « » « »</pre>		
The Owner and Contractor agree as follows.		

ELECTRONIC COPYING of any portion of this AIA® Document to another electronic file is prohibited and constitutes a violation of copyright laws as set forth in the footer of this document.

TABLE OF ARTICLES

- THE WORK OF THIS CONTRACT 1
- DATE OF COMMENCEMENT AND SUBSTANTIAL COMPLETION 2
- 3 **CONTRACT SUM**
- **PAYMENT**
- 5 **DISPUTE RESOLUTION**
- **ENUMERATION OF CONTRACT DOCUMENTS**
- 7 **GENERAL PROVISIONS**
- 8 **OWNER**
- 9 CONTRACTOR
- 10 **ARCHITECT**
- 11 **SUBCONTRACTORS**
- 12 CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS
- 13 **CHANGES IN THE WORK**
- TIME 14
- **PAYMENTS AND COMPLETION** 15
- 16 PROTECTION OF PERSONS AND PROPERTY
- 17 **INSURANCE AND BONDS**
- **CORRECTION OF WORK** 18
- 19 MISCELLANEOUS PROVISIONS
- 20 TERMINATION OF THE CONTRACT
- 21 **CLAIMS AND DISPUTES**

EXHIBIT A DETERMINATION OF THE COST OF THE WORK

ARTICLE 1 THE WORK OF THIS CONTRACT

The Contractor shall execute the Work described in the Contract Documents listed in Article 6 of this Agreement or reasonably inferable by the Contractor from the Contract Documents as necessary to produce the results intended by the Contract Documents, except as specifically indicated in the Contract Documents to be the responsibility of others.

ARTICLE 2 DATE OF COMMENCEMENT AND SUBSTANTIAL COMPLETION

§ 2.1 The date of commencement of the Work shall be: (Check one of the following boxes.)

[**« »**] The date of this Agreement.

[« »]	A date set forth in a notice to proceed issued by the Owner.		
[« »]	Established as follows: (Insert a date or a means to determine the date of commencement of the Work.)		
	« »		
If a date of co. Agreement.	mmencement of the Work is not selected, then the date of commencement shall be the date of this		
§ 2.2 The Con	tract Time shall be measured from the date of commencement.		
achieve Substa	ial Completion to adjustments of the Contract Time as provided in the Contract Documents, the Contractor shall antial Completion of the entire Work: propriate box and complete the necessary information.)		
[« »]	Not later than « » (« ») calendar days from the date of commencement of the Work.		
[« X »]	By the following date: Substantial Completion: July 27, 2026 (Close of Business) Final Completion: July 31, 2026 (Close of Business)		
§ 2.3.2 Subject to adjustments of the Contract Time as provided in the Contract Documents, if portions of the Work are to be completed prior to Substantial Completion of the entire Work, the Contractor shall achieve Substantial Completion of such portions by the following dates:			
Port	tion of Work Substantial Completion Date		
Por	tion of Work Substantial Completion Date		
§ 2.3.3 If the C	Contractor fails to achieve Substantial Completion as provided in this Section 2.3, liquidated damages, a assessed as set forth in Section 3.5.		
§ 2.3.3 If the C if any, shall be ARTICLE 3 C § 3.1 The Owr Contract. The	Contractor fails to achieve Substantial Completion as provided in this Section 2.3, liquidated damages,		
§ 2.3.3 If the C if any, shall be ARTICLE 3 C § 3.1 The Owr Contract. The (Check the ap)	Contractor fails to achieve Substantial Completion as provided in this Section 2.3, liquidated damages, e assessed as set forth in Section 3.5. ONTRACT SUM ner shall pay the Contractor the Contract Sum in current funds for the Contractor's performance of the Contract Sum shall be one of the following:		
§ 2.3.3 If the C if any, shall be ARTICLE 3 C § 3.1 The Owr Contract. The (Check the ap)	Contractor fails to achieve Substantial Completion as provided in this Section 2.3, liquidated damages, a assessed as set forth in Section 3.5. ONTRACT SUM her shall pay the Contractor the Contract Sum in current funds for the Contractor's performance of the Contract Sum shall be one of the following: propriate box.)		
§ 2.3.3 If the C if any, shall be ARTICLE 3 C § 3.1 The Owr Contract. The (Check the ap)	Contractor fails to achieve Substantial Completion as provided in this Section 2.3, liquidated damages, a assessed as set forth in Section 3.5. ONTRACT SUM ner shall pay the Contractor the Contract Sum in current funds for the Contractor's performance of the Contract Sum shall be one of the following: propriate box.) Stipulated Sum, in accordance with Section 3.2 below		
§ 2.3.3 If the C if any, shall be ARTICLE 3 C § 3.1 The Owr Contract. The (Check the ap) [« X »] [« »]	Contractor fails to achieve Substantial Completion as provided in this Section 2.3, liquidated damages, a assessed as set forth in Section 3.5. ONTRACT SUM ner shall pay the Contractor the Contract Sum in current funds for the Contractor's performance of the Contract Sum shall be one of the following: propriate box.) Stipulated Sum, in accordance with Section 3.2 below Cost of the Work plus the Contractor's Fee, in accordance with Section 3.3 below Cost of the Work plus the Contractor's Fee with a Guaranteed Maximum Price, in accordance with		
§ 2.3.3 If the C if any, shall be ARTICLE 3 C § 3.1 The Own Contract. The (Check the ap) [(X)] [()] (Based on the	Contractor fails to achieve Substantial Completion as provided in this Section 2.3, liquidated damages, assessed as set forth in Section 3.5. ONTRACT SUM ner shall pay the Contractor the Contract Sum in current funds for the Contractor's performance of the Contract Sum shall be one of the following: propriate box.) Stipulated Sum, in accordance with Section 3.2 below Cost of the Work plus the Contractor's Fee, in accordance with Section 3.3 below Cost of the Work plus the Contractor's Fee with a Guaranteed Maximum Price, in accordance with Section 3.4 below		

Owner to accept other alternates subsequent to the execution of this Agreement, attach a schedule of such other

alternates showing the amount for each and the date when that amount expires.)

« »

§ 3.2.2 Unit prices, if any:

(Identify the item and state the unit price and the quantity limitations, if any, to which the unit price will be applicable.)

§ 3.3 Cost of the Work Plus Contractor's Fee

§ 3.3.1 The Cost of the Work is as defined in Exhibit A, Determination of the Cost of the Work.

§ 3.3.2 The Contractor's Fee:

(State a lump sum, percentage of Cost of the Work or other provision for determining the Contractor's Fee and the method of adjustment to the Fee for changes in the Work.)

« »

§ 3.4 Cost of the Work Plus Contractor's Fee With a Guaranteed Maximum Price

§ 3.4.1 The Cost of the Work is as defined in Exhibit A, Determination of the Cost of the Work.

§ 3.4.2 The Contractor's Fee:

(State a lump sum, percentage of Cost of the Work or other provision for determining the Contractor's Fee and the method of adjustment to the Fee for changes in the Work.)

« »

§ 3.4.3 Guaranteed Maximum Price

§ 3.4.3.1 The sum of the Cost of the Work and the Contractor's Fee is guaranteed by the Contractor not to exceed « » (\$ « »), subject to additions and deductions by changes in the Work as provided in the Contract Documents. This maximum sum is referred to in the Contract Documents as the Guaranteed Maximum Price. Costs which would cause the Guaranteed Maximum Price to be exceeded shall be paid by the Contractor without reimbursement by the Owner.

(Insert specific provisions if the Contractor is to participate in any savings.)

« »

§ 3.4.3.2 The Guaranteed Maximum Price is based on the following alternates, if any, which are described in the Contract Documents and are hereby accepted by the Owner:

(State the numbers or other identification of accepted alternates. If the bidding or proposal documents permit the Owner to accept other alternates subsequent to the execution of this Agreement, attach a schedule of such other alternates showing the amount for each and the date when that amount expires.)

« »

§ 3.4.3.3 Unit Prices, if any:

(Identify the item and state the unit price and the quantity limitations, if any, to which the unit price will be applicable.)

Item Units and Limitations Price per Unit (\$0.00)

§ 3.4.3.4 Allowances, if any, included in the Guaranteed Maximum Price: (*Identify each allowance*.)

<u>Item</u> <u>Pric</u>	e
§ 3.4.3.5 Assumptions, if any, on which the Guaranteed Ma	iximum Price is based:
« »	
§ 3.4.3.6 To the extent that the Contract Documents are anti- Maximum Price includes the costs attributable to such furth and reasonably inferable therefrom. Such further developm quality of materials, finishes or equipment, all of which, if	her development consistent with the Contract Documents nent does not include changes in scope, systems, kinds and
§ 3.4.3.7 The Owner shall authorize preparation of revisions upon assumptions contained in Section 3.4.3.5. The Owner to the Contractor. The Contractor shall notify the Owner as upon assumptions contained in Section 3.4.3.5 and the revi	r shall promptly furnish such revised Contract Documents and Architect of any inconsistencies between the agreed-
§ 3.5 Liquidated damages, if any: (Insert terms and conditions for liquidated damages, if any	,)
« »	
ARTICLE 4 PAYMENT § 4.1 Progress Payments § 4.1.1 Based upon Applications for Payment submitted to Payment issued by the Architect, the Owner shall make proceed to Contractor as provided below and elsewhere in the Contractor	ogress payments on account of the Contract Sum to the
§ 4.1.2 The period covered by each Application for Paymer the month, or as follows:	nt shall be one calendar month ending on the last day of
« »	
§ 4.1.3 Provided that an Application for Payment is receive month, the Owner shall make payment to the Contractor no scheduled meeting of the Board of Education at which the been presented to the Owner. When an Application for Payment	ot later than ten (10) days following the next regularly Application for Payment approved by the Architect had

- scheduled meeting of the Board of Education at which the Application for Payment approved by the Architect had been presented to the Owner. When an Application for Payment is received by the Architect after the date fixed above and the Application is approved by the Architect, payment shall be made by the Owner not less than ten (10) days after the first regularly scheduled meeting of the succeeding month of the Board of Education after the Architect receives the Application for Payment.
- § 4.1.4.1 Upon certification by the Architect, the Owner will in accordance with 4.1.3, approve payment, and will pay to the Contractor on account of the Contract, 90 percent of the value of labor and materials incorporated in the Work and 90 percent of materials suitably stored in accord with the General Conditions up to the last day of the proceeding month.
- § 4.1.4.2 After Substantial Completion, and upon receipt of Applications for Payment accompanied by Consent of Surety to Reduction in or Partial Release of Retainage executed in triplicate on AIA Document G707A, latest Edition, and upon certification by the Architect, the Owner will pay the Contractor, on account of the Contract and as previously stated, 95 percent of the value of labor and materials incorporated in the Work and 95 percent of the materials suitably stored in accord with the General Conditions, up to the last day of the preceding month. The full retainage may be reinstalled if the manner of completion of the work, and its progress do not remain satisfactory to

the Architect or the Owner, or for other good and sufficient reasons, or if Surety revokes its Consent for Reduction in or Partial Release of Retainage.

§ 4.2 Final Payment

§ 4.2.1 Final payment, constituting the entire unpaid balance of the Contract Sum, shall be made by the Owner to the Contractor when:

- .1 the Contractor has fully performed the Contract except for the Contractor's responsibility to correct Work and to satisfy other requirements, if any, which extend beyond final payment;
- .2 the Contractor has submitted a final accounting for the Cost of the Work, where payment is on the basis of the Cost of the Work with or without a guaranteed maximum price;
- .3 the Contractor has submitted to the Architect a Final Payment Application in accordance with the terms of 15.5.1.1, 15.5.1.2 and 15.5.2.1; and
- .4 a final Certificate for Payment has been issued by the Architect..

§ 4.2.2 The Owner's final payment to the Contractor shall be made no later than thirty (30) days after the next regularly scheduled meeting of the Board of Education after its receipt from the Architect of the final Certificate for Payment.

ARTICLE 5 DISPUTE RESOLUTION

§ 5.1 For any claim not resolved by Section 21, the method of binding dispute resolution shall be in a court of competent jurisdiction in the State of Iowa. Mandatory and exclusive venue for any disputes shall be in the appropriate state or federal court for the county in which the Project is located.

ARTICLE 6 ENUMERATION OF CONTRACT DOCUMENTS

§ 6.1 The Contract Documents are defined in Article 7 and, except for Modifications issued after execution of this Agreement, are enumerated in the sections below.

§ 6.1.1 The Agreement is this executed AIA Document A104TM_2017, Standard Abbreviated Form of Agreement Between Owner and Contractor.

§ 6.1.2 AIA Document E203[™]–2013, Building Information Modeling and Digital Data Exhibit, dated as indicated below:

(Insert the date of the E203–2013 incorporated into this Agreement.)

« Not applicable »

§ 6.1.3 The Supplementary and other Conditions of the Contract:

Document Title Date Pages

§ 6.1.4 The Specifications:

(Either list the Specifications here or refer to an exhibit attached to this Agreement.)

Section Title Date Pages

§ 6.1.5 The Drawings:

(Either list the Drawings here or refer to an exhibit attached to this Agreement.)

« »

Number Title Date

Number	Date	Pages

Portions of Addenda relating to bidding or proposal requirements are not part of the Contract Documents unless the bidding or proposal requirements are enumerated in this Article 6.

§ 6.1.7 Additional documents, if any, forming part of the Contract Documents:

.1 Other Exhibits:

(Check all boxes that apply.)

[«»] Exhibit A, Determination of the Cost of the Work.

[«»] AIA Document E204TM_2017, Sustainable Projects Exhibit, dated as indicated below:

(Insert the date of the E204-2017 incorporated into this Agreement.)

«»

[«»] The Sustainability Plan:

Title Date Pages

[«»] Supplementary and other Conditions of the Contract:

Document Title Date Pages

.2 Other documents, if any, listed below: (List here any additional documents that are intended to form part of the Contract Documents.)

ARTICLE 7 GENERAL PROVISIONS

§ 7.1 The Contract Documents

The Contract Documents are enumerated in Article 6 and consist of this Agreement (including, if applicable, Supplementary and other Conditions of the Contract), Drawings, Specifications, Addenda issued prior to the execution of this Agreement, other documents listed in this Agreement, and Modifications issued after execution of this Agreement. A Modification is (1) a written amendment to the Contract signed by both parties, (2) a Change Order, (3) a Construction Change Directive, or (4) a written order for a minor change in the Work issued by the Architect. The intent of the Contract Documents is to include all items necessary for the proper execution and completion of the Work by the Contractor. The Contract Documents are complementary, and what is required by one shall be as binding as if required by all; performance by the Contractor shall be required to the extent consistent with the Contract Documents and reasonably inferable from them as being necessary to produce the indicated results. In the event of inconsistencies within or between parts of the Contract Documents, or between the contract Documents and applicable standards, codes, and ordinances, the Contractor shall (i) provide the better quality or greater quantity of Work or (ii) comply with the more stringent requirement; either or both in accordance with the Engineer's interpretation. The terms and conditions of this Section 7.1, however, shall not relieve the Contractor of any of the obligations set forth in Sections 9.1 and 9.6.

§ 7.2 The Contract

The Contract Documents form the Contract for Construction. The Contract represents the entire and integrated agreement between the parties hereto and supersedes prior negotiations, representations, or agreements, either written or oral. The Contract may be amended or modified only by a Modification. The Contract Documents shall not be construed to create a contractual relationship of any kind between any persons or entities other than the Owner and the Contractor.

§ 7.3 The Work

The term "Work" means the construction and services required by the Contract Documents, whether completed or partially completed, and includes all other labor, materials, equipment, and services provided or to be provided by the Contractor to fulfill the Contractor's obligations. The Work may constitute the whole or a part of the Project.

§ 7.4 Instruments of Service

Instruments of Service are representations, in any medium of expression now known or later developed, of the tangible and intangible creative work performed by the Architect and the Architect's consultants under their respective professional services agreements. Instruments of Service may include, without limitation, studies, surveys, models, sketches, drawings, specifications, and other similar materials.

§ 7.5 Ownership and use of Drawings, Specifications and Other Instruments of Service

§ 7.5.1 The Architect and the Architect's consultants shall be deemed the authors and owners of their respective Instruments of Service, including the Drawings and Specifications, and will retain all common law, statutory and other reserved rights in their Instruments of Service, including copyrights. The Contractor, Subcontractors, Subsubcontractors, and suppliers shall not own or claim a copyright in the Instruments of Service. Submittal or distribution to meet official regulatory requirements or for other purposes in connection with the Project is not to be construed as publication in derogation of the Architect's or Architect's consultants' reserved rights.

§ 7.5.2 The Contractor, Subcontractors, Sub-subcontractors and suppliers are authorized to use and reproduce the Instruments of Service provided to them, subject to the protocols established pursuant to Sections 7.6 and 7.7, solely and exclusively for execution of the Work. All copies made under this authorization shall bear the copyright notice, if any, shown on the Instruments of Service. The Contractor, Subcontractors, Sub-subcontractors, and suppliers may not use the Instruments of Service on other projects or for additions to this Project outside the scope of the Work without the specific written consent of the Owner, Architect and the Architect's consultants.

§ 7.6 Digital Data Use and Transmission

The parties shall agree upon protocols governing the transmission and use of Instruments of Service or any other information or documentation in digital form. The parties will use AIA Document E203TM–2013, Building Information Modeling and Digital Data Exhibit, to establish the protocols for the development, use, transmission, and exchange of digital data.

§ 7.7 Building Information Models Use and Reliance

Any use of, or reliance on, all or a portion of a building information model without agreement to protocols governing the use of, and reliance on, the information contained in the model and without having those protocols set forth in AIA Document E203TM–2013, Building Information Modeling and Digital Data Exhibit, and the requisite AIA Document G202TM–2013, Project Building Information Modeling Protocol Form, shall be at the using or relying party's sole risk and without liability to the other party and its contractors or consultants, the authors of, or contributors to, the building information model, and each of their agents and employees.

§ 7.8 Severability

The invalidity of any provision of the Contract Documents shall not invalidate the Contract or its remaining provisions. If it is determined that any provision of the Contract Documents violates any law, or is otherwise invalid or unenforceable, then that provision shall be revised to the extent necessary to make that provision legal and enforceable. In such case the Contract Documents shall be construed, to the fullest extent permitted by law, to give effect to the parties' intentions and purposes in executing the Contract.

§ 7.9 Notice

§ 7.9.1 Except as otherwise provided in Section 7.9.2, where the Contract Documents require one party to notify or give notice to the other party, such notice shall be provided in writing to the designated representative of the party to whom the notice is addressed and shall be deemed to have been duly served if delivered in person, by mail, by courier, or by electronic transmission in accordance with AIA Document E203TM—2013, Building Information Modeling and Digital Data Exhibit, if completed, or as otherwise set forth below:

(If other than in accordance with AIA Document E203–2013, insert requirements for delivering Notice in electronic format such as name, title and email address of the recipient and whether and how the system will be required to generate a read receipt for the transmission.)

« »

§ 7.9.2 Notice of Claims shall be provided in writing and shall be deemed to have been duly served only if delivered to the designated representative of the party to whom the notice is addressed by certified or registered mail, or by courier providing proof of delivery.

§ 7.10 Relationship of the Parties

Where the Contract is based on the Cost of the Work plus the Contractor's Fee, with or without a Guaranteed Maximum Price, the Contractor accepts the relationship of trust and confidence established by this Agreement and covenants with the Owner to cooperate with the Architect and exercise the Contractor's skill and judgment in furthering the interests of the Owner; to furnish efficient business administration and supervision; to furnish at all times an adequate supply of workers and materials; and to perform the Work in an expeditious and economical manner consistent with the Owner's interests. The Owner agrees to furnish and approve, in a timely manner, information required by the Contractor and to make payments to the Contractor in accordance with the requirements of the Contract Documents.

ARTICLE 8 OWNER

§ 8.1 Information and Services Required of the Owner

- § 8.1.1 Prior to commencement of the Work, at the written request by the Contractor, the Owner shall furnish to the Contractor reasonable evidence that the Owner has made financial arrangements to fulfill the Owner's obligations under the Contract. The Contractor shall have no obligation to commence the Work until the Owner provides such evidence. If commencement of the Work is delayed under this Section 8.1.1, the Contract Time shall be extended appropriately.
- § 8.1.2 The Owner shall furnish all necessary surveys and a legal description of the site.
- § 8.1.3 The Contractor shall be entitled to rely on the accuracy of information furnished by the Owner but shall exercise proper precautions relating to the safe performance of the Work.
- § 8.1.4 Except for permits and fees that are the responsibility of the Contractor under the Contract Documents, including those required under Section 9.6.1, the Owner shall secure and pay for other necessary approvals, easements, assessments, and charges required for the construction, use, or occupancy of permanent structures or for permanent changes in existing facilities.

§ 8.2 Owner's Right to Stop the Work

If the Contractor fails to correct Work which is not in accordance with the requirements of the Contract Documents, or persistently fails to carry out the Work in accordance with the Contract Documents, the Owner may issue a written order to the Contractor to stop the Work or any portion thereof until the cause of such order is eliminated.

§ 8.3 Owner's Right to Carry Out the Work

If the Contractor defaults or neglects to carry out the work in accordance with the Contract Documents, and fails within three (3) days after receipt of written notice from the Owner to commence and continue correction of such default or neglect with diligence and promptness, the Owner, without prejudice to any other remedy the Owner may have, may correct such deficiencies and may deduct the reasonable costs thereof, including Owner's expenses and compensation for the Architect's services made necessary thereby from the payment then or thereafter due the Contractor.

§ 8.4 Extent of the Owner Rights

- § 8.4.1 The rights stated in this Article 8 and elsewhere in the Contract Documents are cumulative and not in limitation of any rights of the Owner (i) granted in the Contract Documents, (ii) at law, or (iii) in equity.
- § 8.4.2 In no event shall the Owner have control over, charge of, or any responsibility for construction means, methods, techniques, sequences, or procedures or for safety precautions and programs in connection with the Work, notwithstanding any of the rights and authority granted the Owner in the Contract Documents.

ARTICLE 9 CONTRACTOR

§ 9.1 Review of Contract Documents and Field Conditions by Contractor

§ 9.1.1 Execution of the Contract by the Contractor is a representation that the Contractor has visited the site, become generally familiar with local conditions under which the Work is to be performed and correlated personal observations with requirements of the Contract Documents. Prior to execution of the Agreement, the Contractor and each Subcontractor shall have evaluated and satisfied themselves as to the conditions and limitations under which the Work is to be performed, including, without limitation, (i) the location, condition, layout, and nature of the Project site and surrounding areas, (ii) generally prevailing climatic conditions, (iii) anticipated labor supply and costs, (iv) availability and cost of materials, tools, and equipment, and (v) other similar issues. The Owner assumes no responsibility or liability for the physical condition or safety of the Project site or any improvements located on the Project site. Except as set forth in Section 17.2.1, the Contractor shall be solely responsible for providing a safe place for the performance of the Work. The Owner shall not be required to make any adjustment in either the Contract Sum or the Contract Time in connection with any failure by the Contractor or any Subcontractor to have complied with the requirements of this Section 9.1.1.

§ 9.1.2 Because the Contract Documents are complementary, the Contractor shall, before starting each portion of the Work, carefully study and compare the various Contract Documents relative to that portion of the Work, as well as the information furnished by the Owner pursuant to Section 8.1.2, shall take field measurements of any existing conditions related to that portion of the Work and shall observe any conditions at the site affecting it. These obligations are for the purpose of facilitating coordination and construction by the Contractor and are not for the purpose of discovering errors, omissions, or inconsistencies in the Contract Documents; however, the Contractor shall promptly report to the Architect any errors, inconsistencies, or omissions discovered by or made known to the Contractor as a request for information in such form as the Architect may require. It is recognized that the Contractor's review is made in the Contractor's capacity as a contractor and not as a licensed design professional unless otherwise specifically provided in the Contract Documents. The exactness of grades, elevations, dimensions, or locations given on any Drawings issued by the Engineer, or the work installed by other contractors, is not guaranteed by the Engineer or the Owner. The Contractor shall, therefore, satisfy itself as to the accuracy of all grades, elevations, dimensions, and locations. In all cases of interconnection of its Work with existing or other work, the Contractor shall verify at the site all dimensions relating to such existing or other work. Any errors due to the Contractor's failure to so verify all such grades, elevations, dimensions, or locations shall be promptly rectified by the Contractor without any additional cost to the Owner.

§ 9.1.3 The Contractor is not required to ascertain that the Contract Documents are in accordance with applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of public authorities, but the Contractor shall promptly report to the Architect any nonconformity discovered by or made known to the Contractor as a request for information in such form as the Architect may require.

§ 9.2 Supervision and Construction Procedures

§ 9.2.1 The Contractor shall supervise and direct the Work, using the Contractor's best skill and attention. The Contractor shall be solely responsible for and have control over construction means, methods, techniques, sequences, and procedures, and for coordinating all portions of the Work under the Contract, unless the Contract Documents give other specific instructions concerning these matters.

§ 9.2.2 The Contractor shall be responsible to the Owner for acts and omissions of the Contractor's employees, Subcontractors, equipment suppliers, and their agents and employees and other persons or entities performing portions of the Work for or on behalf of the Contractor or any of its Subcontractors.

§ 9.3 Labor and Materials

§ 9.3.1 Unless otherwise provided in the Contract Documents, the Contractor shall provide and pay for labor, materials, equipment, tools, construction equipment and machinery, water, heat, utilities, transportation, and other facilities and services necessary for proper execution and completion of the Work whether temporary or permanent and whether or not incorporated or to be incorporated in the Work.

§ 9.3.2 The Contractor shall enforce strict discipline and good order among the Contractor's employees and other persons carrying out the Work. The Contractor shall not permit employment of unfit persons or persons not skilled in tasks assigned to them.

§ 9.3.3 The Contractor may make a substitution only with the consent of the Owner, after evaluation by the Architect and in accordance with a Modification.

§ 9.4 Warranty

The Contractor warrants to the Owner and Architect that materials and equipment furnished under the Contract will be of good quality and new unless the Contract Documents require or permit otherwise. The Contractor further warrants that the Work will conform to the requirements of the Contract Documents and will be free from defects, except for those inherent in the quality of the Work the Contract Documents require or permit. Work, materials, or equipment not conforming to these requirements may be considered defective. The Contractor's warranty excludes remedy for damage or defect caused by abuse, alterations to the Work not executed by the Contractor, improper or insufficient maintenance, improper operation or normal wear and tear under normal usage. All other warranties required by the Contract Documents shall be issued in the name of the Owner, or shall be transferable to the Owner, and shall commence in accordance with Section 15.6.3.

§ 9.5 Taxes

§ 9.5.1 Federal Taxes. Where federal statutes exempt the District from payment of excise or manufacturer's taxes on material or equipment, the Contractor shall exclude the amount of any applicable federal excise or manufacturer's tax from its bid. The District shall furnish the Contractor the necessary exemption certificates and aid the Contractor in the recovery of any such taxes paid.

§ 9.5.2 State and City Taxes. The District is a political subdivision and is exempt from state and city sales taxes and will appoint the successful bidder to be its purchasing agent. Materials to be incorporated into the complete project shall be purchased tax exempt in the name of the school district and the bidder shall exclude from its bid all State of Iowa and local sales and use taxes for such materials. The bidder shall include all State of Iowa and local sales and use taxes for materials which are used or consumed in performing the Work that is not incorporated into the completed project.

§ 9.6 Permits, Fees, Notices, and Compliance with Laws

§ 9.6.1 Unless otherwise provided in the Contract Documents, the Contractor shall secure and pay for the building permit as well as other permits, fees, licenses, and inspections by government agencies necessary for proper execution and completion of the Work that are customarily secured after execution of the Contract and legally required at the time bids are received or negotiations concluded.

§ 9.6.2 The Contractor shall comply with and give notices required by applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities applicable to performance of the Work. If the Contractor performs Work knowing it to be contrary to applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of public authorities, the Contractor shall assume appropriate responsibility for such Work and shall bear the costs attributable to correction.

§ 9.7 Allowances

The Contractor shall include in the Contract Sum all allowances stated in the Contract Documents. The Owner shall select materials and equipment under allowances with reasonable promptness. Allowance amounts shall include the costs to the Contractor of materials and equipment delivered at the site and all required taxes, less applicable trade discounts. Contractor's costs for unloading and handling at the site, labor, installation, overhead, profit, and other expenses contemplated for stated allowance amounts shall be included in the Contract Sum but not in the allowance.

§ 9.8 Contractor's Construction Schedules

§ 9.8.1 The Contractor, promptly after being awarded the Contract, shall submit for the Owner's and Architect's information a Contractor's construction schedule for the Work. The schedule shall not exceed time limits current under the Contract Documents, shall be revised at appropriate intervals as required by the conditions of the Work and Project, shall be related to the entire Project to the extent required by the Contract Documents, and shall provide for expeditious and practicable execution of the Work.

§ 9.8.2 The Contractor shall perform the Work in general accordance with the most recent schedule submitted to the Owner and Architect.

§ 9.9 Submittals

§ 9.9.1 The Contractor shall review for compliance with the Contract Documents and submit to the Architect Shop Drawings, Product Data, Samples, and similar submittals required by the Contract Documents in coordination with the Contractor's construction schedule and in such sequence as to allow the Architect reasonable time for review. By submitting Shop Drawings, Product Data, Samples, and similar submittals, the Contractor represents to the Owner and Architect that the Contractor has (1) reviewed and approved them; (2) determined and verified materials, field measurements, and field construction criteria related thereto, or will do so; and (3) checked and coordinated the information contained within such submittals with the requirements of the Work and of the Contract Documents. The Work shall be in accordance with approved submittals.

§ 9.9.2 Shop Drawings, Product Data, Samples and similar submittals are not Contract Documents.

§ 9.9.3 The Contractor shall not be required to provide professional services that constitute the practice of architecture or engineering unless such services are specifically required by the Contract Documents or unless the Contractor needs to provide such services in order to carry out the Contractor's own responsibilities. If professional design services or certifications by a design professional are specifically required, the Owner and the Architect will specify the performance and design criteria that such services must satisfy. The Contractor shall cause such services or certifications to be provided by an appropriately licensed design professional. If no criteria are specified, the design shall comply with applicable codes and ordinances. Each Party shall be entitled to rely upon the information provided by the other Party. The Architect will review and approve or take other appropriate action on submittals for the limited purpose of checking for conformance with information provided and the design concept expressed in the Contract Documents. The Architect's review of Shop Drawings, Product Data, Samples, and similar submittals shall be for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents. In performing such review, the Architect will approve, or take other appropriate action upon, the Contractor's Shop Drawings, Product Data, Samples, and similar submittals.

§ 9.9.4 Shop drawings are drawings, diagrams, schedules and other data specially prepared for the Work by the Contractor or a Sub-subcontractor, manufacturer, supplier, or distributor to illustrate some portion of the Work.

§ 9.9.5 The Contractor shall perform no portion of the Work requiring submittal and review of shop drawings, product data, samples or similar submittals until the respective submittals have been approved by the Architect. Such Work shall be in accordance with approved submittals.

§ 9.9.6 The Contractor shall not be relieved of responsibility for deviation from the requirements of the Contract Documents by the Architect's approval of the shop drawings, product data, samples, similar submittals unless the Contractor has specially informed the Architect in writing of such deviation at the time of submittal and the Architect has given written approval to the specific deviation. The Contractor shall not be relieved of the responsibility for errors or omissions in shop drawings, product data, samples or similar submittals by the Architect's approval thereof.

§ 9.9.7 The Contractor shall maintain at the site for the Owner one copy of the Drawings, Specifications, Addenda, Change Orders and other Modifications, in good order and marked currently to indicate field changes and selections made during construction, and one copy of approved Shop Drawings, Product Data, Samples and similar required submittals. These shall be available to the Architect and shall be delivered to the Architect for submittal to the Owner upon completion of the Work as a record of the Work as constructed.

§ 9.10 Use of Site

The Contractor shall confine operations at the site to areas permitted by applicable laws, statutes, ordinances, codes, rules and regulations, lawful orders of public authorities, and the Contract Documents and shall not unreasonably encumber the site with materials or equipment.

§ 9.11 Cutting and Patching

The Contractor shall be responsible for cutting, fitting, or patching required to complete the Work or to make its parts fit together properly.

§ 9.12 Cleaning Up

The Contractor shall keep the premises and surrounding area free from accumulation of waste materials and rubbish caused by operations under the Contract. At completion of the Work, the Contractor shall remove waste materials, rubbish, the Contractor's tools, construction equipment, machinery, and surplus material from and about the Project.

§ 9.13 Access to Work

The Contractor shall provide the Owner and Architect with access to the Work in preparation and progress wherever located.

§ 9.14 Royalties, Patents and Copyrights

The Contractor shall pay all royalties and license fees. The Contractor shall defend suits or claims for infringement of copyrights and patent rights and shall hold the Owner and Architect harmless from loss on account thereof, but shall not be responsible for defense or loss when a particular design, process, or product of a particular manufacturer or manufacturers is required by the Contract Documents or where the copyright violations are contained in Drawings, Specifications or other documents prepared by the Owner or Architect. However, if an infringement of a copyright or patent is discovered by, or made known to, the Contractor, the Contractor shall be responsible for the loss unless the information is promptly furnished to the Architect.

§ 9.15 Indemnification

§ 9.15.1 To the fullest extent permitted by law, the Construction Manager shall defend, indemnify, and hold harmless the Owner and its officers, board members, employees, agents, consultants, and representatives (the "Indemnitees") from and against any and all claims, demands, damages, losses, expenses, lawsuits, actions, cross-claims, counterclaims, third-party actions, liens, damages, debts, obligations, exemplary damages, consequential damages, punitive damages, liabilities, judgments, and causes of action (including without limitation reasonable consultants' and attorneys' fees and expenses), that arise out of, are related to, or are in connection with this Agreement, the Project, the Work, the Construction Manager's services, the Construction Manager's performance hereunder, and/or the Construction Manager's conduct at or related to the Project or the Owner's property (hereinafter "Indemnity Claims"), provided that any such Indemnity Claim is attributable to bodily injury, sickness, disease or death, or to injury to or destruction of tangible property, including the loss of use of the same, but only to the extent caused by the intentional, reckless, or negligent acts or omissions of the Construction Manager, its subcontractors, subsubcontractors, or its material suppliers, or anyone directly or indirectly employed by them, or anyone for whose acts they may be liable. Such obligation shall not be construed to negate, abridge, or reduce other rights or obligations of indemnity that would otherwise exist as to a party or person described in this Section 9.15

Notwithstanding the foregoing, the Construction Manager's obligations in this Section 9.15 specifically except any obligation to hold harmless, defend, or indemnify an Indemnitee against any Indemnity Claim solely caused by such Indemnitee's own negligent conduct.

§ 19.15.2 The indemnification obligation under this Section 9.15 shall not be limited by a limitation on amount or type of damages, compensation, or benefits payable by or for Construction Manager or anyone directly employed by them, under workers' compensation acts, disability benefit acts or other employee benefit acts.

ARTICLE 10 ARCHITECT

§ 10.1 The Architect will provide administration of the Contract as described in the Contract Documents and will be an Owner's representative during construction, until the date the Architect issues the final Certificate for Payment. The Architect will have authority to act on behalf of the Owner only to the extent provided in the Contract Documents, unless otherwise modified in writing in accordance with other provisions of the Contract.

§ 10.2 Duties, responsibilities, and limitations of authority of the Architect as set forth in the Contract Documents shall not be restricted, modified, or extended without written consent of the Owner, Contractor, and Architect. Consent shall not be unreasonably withheld.

§ 10.3 The duties of the Architect shall include visiting the site, making observations with respect to defects or deficiencies in the Work and determining whether the Work is being performed in a manner so that the Work when fully completed will be generally in accordance with the Contract with the terms and conditions of the Contract between the Architect and the Owner. The Architect will not have control over, charge of, or responsibility for the

13

Construction means, methods, techniques, sequences or procedures, or for safety precautions and programs in connection with the work.

- § 10.4 The Architect shall keep the Owner informed about the progress and quality of the portion of the work completed, and report to the Owner, (1) known deviations from the Contract Documents and from the most recent construction schedule submitted by the Contractor, and (2) defects and deficiencies observed in the work.
- § 10.5 Based on the Architect's evaluations of the Work and of the Contractor's Applications for Payment, the Architect will review and certify the amounts due the Contractor and will issue Certificates for Payment in such amounts.
- § 10.6 The Architect has authority to reject Work that does not conform to the Contract Documents and to require inspection or testing of the Work.
- § 10.7 The Architect will review and approve or take other appropriate action upon, the Contractor's submittals such as Shop Drawings, Product Data, and Samples, but only for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents.
- § 10.8 The Architect will interpret and decide matters concerning performance under, and requirements of, the Contract Documents on written request of either the Owner or Contractor. The Architect will make initial decisions on all claims, disputes, and other matters in question between the Owner and Contractor but will not be liable for results of any interpretations or decisions rendered in good faith.
- § 10.9 The Architect's decisions on matters relating to aesthetic effect will be final if consistent with the intent expressed in the Contract Documents.

ARTICLE 11 SUBCONTRACTORS

- § 11.1 A Subcontractor is a person or entity who has a direct contract with the Contractor to perform a portion of the Work at the site.
- § 11.2 Unless otherwise stated in the Contract Documents of the bidding requirements, the Contractor will as soon as practical after the award of the Contract furnish in writing to the Owner through the Architect the names of the Subcontractors for each of the principal portions of the Work. The Contractor shall not employ on the project any Subcontractor to whom the Owner or the Architect has made reasonable and timely objection.
- § 11.3 Contracts between the Contractor and the Subcontractors shall require each Subcontractor to the extent of the Work performed by the Subcontractor, to be bound to the Contractor by the terms of the Contract Documents.
- § 11.4 All subcontracts shall be in writing in form and substance substantially similar to the Contractor's standard form subcontract and shall specifically provide that the Owner is an intended third-party beneficiary of such subcontract.

ARTICLE 12 CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS

- § 12.1 The term "Separate Contractor(s)" shall mean other contractors retained by the Owner under separate agreements. The Owner reserves the right to perform construction or operations related to the Project with the Owner's own forces, and with Separate Contractors retained under Conditions of the Contract substantially similar to those of this Contract, including those provisions of the Conditions of the Contract related to insurance and waiver of subrogation.
- § 12.2 The Contractor shall afford the Owner and Separate Contractors reasonable opportunity for introduction and storage of their materials and equipment and performance of their activities, and shall connect and coordinate the Contractor's activities with theirs as required by the Contract Documents.
- § 12.3 The Owner shall be reimbursed by the Contractor for costs incurred by the Owner which are payable to a Separate Contractor because of delays, improperly timed activities, or defective construction of the Contractor. The Owner shall be responsible to the Contractor for costs incurred by the Contractor because of delays, improperly timed activities, damage to the Work, or defective construction of a Separate Contractor.

ARTICLE 13 CHANGES IN THE WORK

§ 13.1 By appropriate Modification, changes in the Work may be accomplished after execution of the Contract. The Owner, without invalidating the Contract, may order changes in the Work within the general scope of the Contract consisting of additions, deletions, or other revisions, with the Contract Sum and Contract Time being adjusted accordingly. Such changes in the Work shall be authorized by written Change Order signed by the Owner, Contractor, and Architect, or by written Construction Change Directive signed by the Owner and Architect. Upon issuance of the Change Order or Construction Change Directive, the Contractor shall proceed promptly with such changes in the Work, unless otherwise provided in the Change Order or Construction Change Directive.

§ 13.2 Adjustments in the Contract Sum and Contract Time resulting from a change in the Work shall be determined by mutual agreement of the parties or, in the case of a Construction Change Directive signed only by the Owner and Architect, by the Contractor's cost of labor, material, equipment, and reasonable overhead and profit, unless the parties agree on another method for determining the cost or credit. Pending final determination of the total cost of a Construction Change Directive, the Contractor may request payment for Work completed pursuant to the Construction Change Directive. The Architect will make an interim determination of the amount of payment due for purposes of certifying the Contractor's monthly Application for Payment. When the Owner and Contractor agree on adjustments to the Contract Sum and Contract Time arising from a Construction Change Directive, the Architect will prepare a Change Order.

§ 13.2.1 A Construction Change Directive is a written order prepared by the Architect and signed by the Owner and Architect, directing a change in the Work prior to agreement on adjustment, if any, in the Contract Sum or Contract Time, or both. The Owner may by Construction Change Directive, without invalidating the Contract, order changes in the Work within the general scope of the Contract consisting of additions, deletions or other revisions, the Contract Sum and Contract Time being adjusted accordingly.

§ 13.2.2 If the Construction Change Directive provides for an adjustment to the Contract Sum, the adjustment shall be based on one of the following methods:

- .1 Mutual acceptance of a lump sum properly itemized and supported by sufficient substantiating data to permit evaluation;
- .2 Unit prices stated in the Contract Documents or subsequently agreed upon;
- .3 Cost to be determined in a manner agreed upon by the parties and a mutually acceptable fixed or percentage fee; or
- .4 As provided in Section 13.2.4.

§ 13.2.3 Upon receipt of a Construction Change Directive, the Contractor shall promptly proceed with the change in the Work involved and advise the Architect of the Contractor's agreement or disagreement with the method, if any, provided in the Construction Change Directive for determining the proposed adjustment in the Contract Sum or Contract Time.

§ 13.2.4 If the Contractor disagrees with the method for adjustment in the Contract Sum, the Architect shall determine the method and the adjustment on the basis of reasonable expenditures and savings of those performing the Work attributable to the change, including, in case of an increase in the Contract Sum, an amount for overhead and profit as set forth in the Agreement, or if no such amount is set forth in the Agreement, a reasonable amount. In such case, and also under Section 13.2.2, the Contractor shall keep and present, in such form as the Architect may prescribe, an itemized accounting together with appropriate supporting data. Unless otherwise provided in the Contract Documents, costs for the purposes of this Section 13.2.4 shall be limited to the following:

- .1 Net costs of labor, plus social security, old age and unemployment insurance, fringe benefits required by agreement or custom, and workers' compensation insurance;
- .2 Net costs of materials, supplies and equipment, including cost of transportation, whether incorporated or consumed;
- .3 Net rental costs of machinery and equipment, exclusive of hand tools, whether rented from the Contractor or others:
- .4 Net costs of premiums for all bonds and insurance, permit fees, and sales, use or similar taxes related to the Work;
- .5 Additional net costs of supervision and field office personnel directly attributable to the change; and

- .6 Profit and overhead of 15% of the cost enumerated as costs.
- § 13.3 The Architect will have authority to order minor changes in the Work not involving adjustment in the Contract Sum or extension of the Contract Time and not inconsistent with the intent of the Contract Documents. Such changes shall be effected by written order and shall be binding on the Owner and Contractor. The Contractor shall carry out such written orders promptly. If the Contractor believes that the proposed minor change in the Work will affect the Contract Sum or Contract Time, the Contractor shall notify the Architect and shall not proceed to implement the change in the Work.
- § 13.4 If concealed or unknown physical conditions are encountered at the site that differ materially from those indicated in the Contract Document or which could not have been reasonably anticipated by the Contractor at prebidding investigation, or from conditions ordinarily found to exist, and provided that the Contractor provides notice to the Owner and Architect promptly and before conditions are disturbed, the Contract sum and Contract time shall be equitably adjusted by agreement between the Owner and the Contractor and in the event the Owner and Contractor cannot agree upon the adjustments to the Contract sum and the Contract time it may be submitted as a claim by the Contractor in accordance with Article 21 of this agreement.
- § 13.5 Except as permitted in Section 13.1, a change in the Contract Sum or the Contract Time shall be accomplished only by Change Order. Accordingly, no course of conduct or dealings between the parties, nor express or implied acceptance of alterations or additions to the Work, and no claim that Owner has been unjustly enriched by an alteration of or addition to the Work, whether or not there is, in fact, any unjust enrichment to the Work, shall be the basis of any claim to an increase in any amounts due under the Contract Documents or a change in any time period provided for in the Contract Documents.
- § 13.6 Agreement on any Change Order shall constitute a final settlement of all matters relating to the change in the Work that is the subject of the Change Order, including, but not limited to, all direct and indirect costs associated with such change and any and all adjustments to the Contract Sum and the construction schedule.

ARTICLE 14 TIME

- § 14.1 Time limits stated in the Contract Documents are of the essence of the Contract. By executing this Agreement the Contractor confirms that the Contract Time is a reasonable period for performing the Work and that the amount of the liquidated damages, if any, provided for are reasonable and are not a penalty.
- § 14.2 Unless otherwise provided, Contract Time is the period of time, including authorized adjustments, allotted in the Contract Documents for Substantial Completion and Final Completion of the Work.
- § 14.3 The term "day" as used in the Contract Documents shall mean calendar day unless otherwise specifically defined.
- § 14.4 The date of Substantial Completion is the date certified by the Architect in accordance with Section 15.6.3.
- § 14.5 If the Contractor is delayed at any time in the commencement or progress of the Work by (1) changes ordered in the Work; (2) by labor disputes, fire, unusual delay in deliveries, abnormal adverse weather conditions not reasonably anticipatable, unavoidable casualties, or any causes beyond the Contractor's control; or (3) by other causes that the Contractor asserts, and the Architect determines, justify delay, then the Contract Time may be extended by Change Order to the extent such delay will prevent the Contractor from achieving Substantial Completion within the Contract Time and if the performance of the Work is not, was not, or would not have been delayed by any other cause for which the Contractor is not entitled to an extension in the Contract Time under the Contract Documents. The Contractor further acknowledges and agrees that adjustments in the Contract Time will be permitted for a delay only to the extent such delay (i) is not caused, or could not have been anticipated, by the Contractor, (ii) could not be limited or avoided by the Contractor's timely notice to the Owner of the delay or reasonable likelihood that a delay will occur, and (iii) is of a duration not less than one (1) day.
- § 14.6 In the event the Contractor does not complete the Work within the time allowed, the Contractor shall pay to the Owner liquidated damages as provided in paragraph 2.3.1 for each day required beyond the Contract time limits to complete the Work.

§ 14.7 Notwithstanding anything to the contrary in the Contract Documents, an extension in the Contract Time, to the extent permitted under Section 14.5, shall be the sole remedy of the Contractor for any (i) delay in the commencement, prosecution, or completion of the Work, (ii) hindrance, interference, suspension or obstruction in the performance of the Work, (iii) loss of productivity, or (v) other similar claims (items i through iv herein collectively referred to in this Section 14.6 as "Delays") whether or not such Delays are foreseeable, unless a Delay is caused by acts of the Owner constituting active interference with the Contractor's performance of the Work, and only to the extent such acts continue after the Contractor furnishes the Owner with notice of such interference. In no event shall the Contractor be entitled to any compensation or recovery of any damages, in connection with any Delay, including without limitation consequential damages, lost opportunity costs, impact damages, or other similar remuneration. The Owner's exercise of any of its rights or remedies under the Contract Documents (including without limitation ordering changes in the Work, or directing suspension, rescheduling, or correction of the Work), regardless of the extent or frequency of the Owner's exercise of such rights or remedies, shall not be construed as intentional interference with the Contractor's performance of the Work.

ARTICLE 15 PAYMENTS AND COMPLETION

§ 15.1 Schedule of Values

§ 15.1.1 Where the Contract is based on a Stipulated Sum or the Cost of the Work with a Guaranteed Maximum Price pursuant to Section 3.2 or 3.4, the Contractor shall submit a schedule of values to the Architect before the first Application for Payment, allocating the entire Stipulated Sum or Guaranteed Maximum Price to the various portions of the Work. The schedule of values shall be prepared in the form, and supported by the data to substantiate its accuracy required by the Architect. This schedule of values shall be used as a basis for reviewing the Contractor's Applications for Payment.

§ 15.1.2 The allocation of the Stipulated Sum or Guaranteed Maximum Price under this Section 15.1 shall not constitute a separate stipulated sum or guaranteed maximum price for each individual line item in the schedule of values.

§ 15.2 Control Estimate

§ 15.2.1 Where the Contract Sum is the Cost of the Work, plus the Contractor's Fee without a Guaranteed Maximum Price pursuant to Section 3.3, the Contractor shall prepare and submit to the Owner a Control Estimate within 14 days of executing this Agreement. The Control Estimate shall include the estimated Cost of the Work plus the Contractor's Fee.

§ 15.2.2 The Control Estimate shall include:

- .1 the documents enumerated in Article 6, including all Modifications thereto;
- .2 a list of the assumptions made by the Contractor in the preparation of the Control Estimate to supplement the information provided by the Owner and contained in the Contract Documents;
- .3 a statement of the estimated Cost of the Work organized by trade categories or systems and the Contractor's Fee;
- .4 a project schedule upon which the Control Estimate is based, indicating proposed Subcontractors, activity sequences and durations, milestone dates for receipt and approval of pertinent information, schedule of shop drawings and samples, procurement and delivery of materials or equipment the Owner's occupancy requirements, and the date of Substantial Completion; and
- .5 a list of any contingency amounts included in the Control Estimate for further development of design and construction.

§ 15.2.3 When the Control Estimate is acceptable to the Owner and Architect, the Owner shall acknowledge it in writing. The Owner's acceptance of the Control Estimate does not imply that the Control Estimate constitutes a Guaranteed Maximum Price.

§ 15.2.4 The Contractor shall develop and implement a detailed system of cost control that will provide the Owner and Architect with timely information as to the anticipated total Cost of the Work. The cost control system shall compare the Control Estimate with the actual cost for activities in progress and estimates for uncompleted tasks and proposed changes. This information shall be reported to the Owner, in writing, no later than the Contractor's first Application for Payment and shall be revised and submitted with each Application for Payment.

§ 15.2.5 The Owner shall authorize preparation of revisions to the Contract Documents that incorporate the agreed-upon assumptions contained in the Control Estimate. The Owner shall promptly furnish such revised Contract Documents to the Contractor. The Contractor shall notify the Owner and Architect of any inconsistencies between the Control Estimate and the revised Contract Documents.

§ 15.3 Applications for Payment

§ 15.3.1 At least ten days before the date established for each progress payment, the Contractor shall submit to the Architect an itemized Application for Payment prepared in accordance with the schedule of values, if required under Section 15.1, for completed portions of the Work. The application shall be notarized, if required; be supported by all data substantiating the Contractor's right to payment that the Owner or Architect require; shall reflect retainage if provided for in the Contract Documents; and include any revised cost control information required by Section 15.2.4. Applications for Payment shall not include requests for payment for portions of the Work for which the Contractor does not intend to pay a Subcontractor or supplier, unless such Work has been performed by others whom the Contractor intends to pay.

§ 15.3.2 With each Application for Payment where the Contract Sum is based upon the Cost of the Work, or the Cost of the Work with a Guaranteed Maximum Price, the Contractor shall submit payrolls, petty cash accounts, receipted invoices or invoices with check vouchers attached, and any other evidence required by the Owner to demonstrate that cash disbursements already made by the Contractor on account of the Cost of the Work equal or exceed progress payments already received by the Contractor plus payrolls for the period covered by the present Application for Payment, less that portion of the progress payments attributable to the Contractor's Fee.

§ 15.3.3 Payments shall be made on account of materials and equipment delivered and suitably stored at the site for subsequent incorporation in the Work. If approved in advance by the Owner, payment may similarly be made for materials and equipment stored, and protected from damage, off the site at a location agreed upon in writing.

§ 15.3.4 The Contractor warrants that title to all Work covered by an Application for Payment will pass to the Owner no later than the time of payment. The Contractor further warrants that upon submittal of an Application for Payment all Work for which Certificates for Payment have been previously issued and payments received from the Owner shall, to the best of the Contractor's knowledge, information and belief, be free and clear of liens, claims, security interests or other encumbrances adverse to the Owner's interests.

§ 15.4 Certificates for Payment

§ 15.4.1 The Architect will, within seven days after receipt of the Contractor's Application for Payment, either issue to the Owner a Certificate for Payment, with a copy to the Contractor, for such amount as the Architect determines is properly due, or notify the Contractor and Owner of the Architect's reasons for withholding certification in whole or in part as provided in Section 15.4.3.

§ 15.4.2 The issuance of a Certificate for Payment will constitute a representation by the Architect to the Owner, based on the Architect's evaluations of the Work and the data in the Application for Payment, that, to the best of the Architect's knowledge, information, and belief, the Work has progressed to the point indicated, the quality of the Work is in accordance with the Contract Documents, and the Contractor is entitled to payment in the amount certified. The foregoing representations are subject to an evaluation of the Work for conformance with the Contract Documents upon Substantial Completion, to results of subsequent tests and inspections, to correction of minor deviations from the Contract Documents prior to completion and to specific qualifications expressed by the Architect. However, the issuance of a Certificate for Payment will not be a representation that the Architect has (1) made exhaustive or continuous on-site inspections to check the quality or quantity of the Work; (2) reviewed construction means, methods, techniques, sequences, or procedures; (3) reviewed copies of requisitions received from Subcontractors and suppliers and other data requested by the Owner to substantiate the Contractor's right to payment; or (4) made examination to ascertain how or for what purpose the Contractor has used money previously paid on account of the Contract Sum.

§ 15.4.3 The Architect may withhold a Certificate for Payment in whole or in part, to the extent reasonably necessary to protect the Owner, if in the Architect's opinion the representations to the Owner required by Section 15.4.2 cannot be made. If the Architect is unable to certify payment in the amount of the Application, the Architect will notify the Contractor and Owner as provided in Section 15.4.1. If the Contractor and the Architect cannot agree on a revised amount, the Architect will promptly issue a Certificate for Payment for the amount for which the Architect is

able to make such representations to the Owner. The Architect may also withhold a Certificate for Payment or, because of subsequently discovered evidence, may nullify the whole or a part of a Certificate for Payment previously issued, to such extent as may be necessary in the Architect's opinion to protect the Owner from loss for which the Contractor is responsible, including loss resulting from acts and omissions described in Section 9.2.2, because of

- .1 defective Work not remedied;
- .2 third-party claims filed or reasonable evidence indicating probable filing of such claims unless security acceptable to the Owner is provided by the Contractor;
- **.3** failure of the Contractor to make payments properly to Subcontractors or suppliers for labor, materials or equipment;
- .4 reasonable evidence that the Work cannot be completed for the unpaid balance of the Contract Sum;
- .5 damage to the Owner or a Separate Contractor;
- reasonable evidence that the Work will not be completed within the Contract Time and that the unpaid balance would not be adequate to cover actual or liquidated damages for the anticipated delay; or
- .7 repeated failure to carry out the Work in accordance with the Contract Documents.

§ 15.4.4 When either party disputes the Architect's decision regarding a Certificate for Payment under Section 15.4.3, in whole or in part, that party may submit a Claim in accordance with Article 21.

§ 15.5 Progress Payments

§ 15.5.1 The Contractor shall pay each Subcontractor, no later than seven days after receipt of payment from the Owner, the amount to which the Subcontractor is entitled, reflecting percentages actually retained from payments to the Contractor on account of the Subcontractor's portion of the Work. The Contractor shall, by appropriate agreement with each Subcontractor, require each Subcontractor to make payments to sub-subcontractors in a similar manner.

§ 15.5.2 Neither the Owner nor Architect shall have an obligation to pay or see to the payment of money to a Subcontractor or supplier except as may otherwise be required by law.

§ 15.5.3 A Certificate for Payment, a progress payment, or partial or entire use or occupancy of the Project by the Owner shall not constitute acceptance of Work not in accordance with the Contract Documents.

§ 15.5.4 Provided the Owner has fulfilled its payment obligations under the Contract Documents, the Contractor shall defend and indemnify the Owner from all loss, liability, damage or expense, including reasonable attorney's fees and litigation expenses, arising out of any lien claim or other claim for payment by any Subcontractor or supplier of any tier. Upon receipt of notice of a lien claim or other claim for payment, the Owner shall notify the Contractor. If approved by the applicable court, when required, the Contractor may substitute a surety bond for the property against which the lien or other claim for payment has been asserted.

§ 15.6 Substantial Completion

§ 15.6.1 Substantial Completion is the stage in the progress of the Work when the Work or designated portion thereof is sufficiently complete in accordance with the Contract Documents so that the Owner can occupy or utilize the Work for its intended use; provided, however, that as a condition precedent to Substantial Completion, the Owner has received all certificates of occupancy and any other permits, approvals, licenses, and other documents from any governmental authority having jurisdiction thereof necessary for the beneficial occupancy of the Project.

§ 15.6.1.1 To be considered Substantially Complete all of the following conditions, if applicable to the work or designated portion thereof, must be satisfactorily completed in accordance with the contract documents along with any other portion of the work necessary for the Owner to occupy and utilize the work for its intended use.

- .1 All final inspections and tests by local authorities have been completed and work accepted.
- .2 Significant demobilization from site has begun. (Demobilization to be complete by the date school staff returns at the end of the summer break.)
- .3 All interior and exterior clean-up is complete.
- .4 All interior and exterior openings are fully secure.
- .5 All contractor provided material and equipment is in place and functional.

- .6 All paving and walks along with associated signage and stripping are complete.
- .7 All permanent fences, hand rails and guard rails are in place.
- .8 All athletic facilities and equipment are complete and ready for use.
- .9 All scaffolding, extra materials, temporary enclosures and protection have been removed.
- .10 All roofing hot tar and ballast work is complete and hot tar kettle has been removed from the site.
- .11 All rooms are ready for Owner to place furniture and Owner provided equipment in their final locations.
- .12 All plumbing fixtures and systems are in place and operational.
- .13 All fire protection systems and equipment are in place and operational and final tests and inspections complete.
- .14 HVAC systems and equipment are in place and functional and providing required control of space temperature and humidity.
- .15 Initial test and balancing work has been completed.
- .16 All special systems and electrical equipment and systems are in place and operational.
- § 15.6.2 When the Contractor considers that the Work, or a portion thereof which the Owner agrees to accept separately, is substantially complete, the Contractor shall prepare and submit to the Architect a comprehensive list of items to be completed or corrected prior to final payment. Failure to include an item on such list does not alter the responsibility of the Contractor to complete all Work in accordance with the Contract Documents.
- § 15.6.3 Upon receipt of the Contractor's list, the Architect will make an inspection to determine whether the Work or designated portion thereof is substantially complete. When the Architect determines that the Work or designated portion thereof is substantially complete, the Architect will issue a Certificate of Substantial Completion which shall establish the date of Substantial Completion; establish responsibilities of the Owner and Contractor for security, maintenance, heat, utilities, damage to the Work and insurance; and fix the time within which the Contractor shall finish all items on the list accompanying the Certificate. Warranties required by the Contract Documents shall commence on the date of Substantial Completion of the Work or designated portion thereof unless otherwise provided in the Certificate of Substantial Completion.
- § 15.6.4 The Certificate of Substantial Completion shall be submitted to the Owner and Contractor for their written acceptance of responsibilities assigned to them in the Certificate. Upon such acceptance and consent of surety, if any, the Owner shall make payment of retainage applying to the Work or designated portion thereof. Such payment shall be adjusted for Work that is incomplete or not in accordance with the requirements of the Contract Documents.

§ 15.7 Final Completion and Final Payment

- § 15.7.1 Upon receipt of the Contractor's notice that the Work is ready for final inspection and acceptance and upon receipt of a final Application for Payment, the Architect will promptly make such inspection and, when the Architect finds the Work acceptable under the Contract Documents and the Contract fully performed, the Architect will promptly issue a final Certificate for Payment stating that to the best of the Architect's knowledge, information and belief, and on the basis of the Architect's on-site visits and inspections, the Work has been completed in accordance with the Contract Documents and that the entire balance found to be due the Contractor and noted in the final Certificate is due and payable. The Architect's final Certificate for Payment will constitute a further representation that conditions stated in Section 15.7.2 as precedent to the Contractor's being entitled to final payment have been fulfilled.
- § 15.7.1.1 In the event that the entire project is substantially and/or finally complete after the stipulated dates of completion or any approved extension thereof as set forth in 2.3 above, the final pay application submitted by Contractor to the Architect for verification and review shall provide the total number of calendar days the Project was not substantially and/or finally complete beyond the stipulated completion dates or any approved extension thereof. The Architect shall verify the amount of calendar days reported on the final pay application and certify to the Owner on the final pay application the total number of calendar days the Project was not substantially and/or finally complete beyond the stipulated completion dates or any approved extension thereof. The Owner shall assess liquidated damages after receipt of the Architect's verification and certification as provided in paragraph 2.3.1 above and shall approve and process the final pay application for payment pursuant to paragraph 4.2.1.
- § 15.7.1.2 In the event that the entire project is substantially and finally complete on or before the stipulated dates of completion, the final pay application submitted by Contractor to the Architect for verification and review shall

20

provide a representation that the Project was completed on or before the stipulated completion dates and that no liquidated damages as provided in paragraph 2.3 and 2.3.1 are due. The Architect shall verify the dates of substantial and final completion and the stipulated completion dates, and certify to the Owner on the final pay application that the Project was completed on or before the stipulated dates for completion. The Owner, after receipt of the Architect's verification and certification, shall approve and process the final pay application for payment pursuant to paragraph 4.2.1.

§ 15.7.2 Final payment shall not become due until the Contractor has delivered to the Owner a complete release of all liens arising out of this Contract or receipts in full covering all labor, materials and equipment for which a lien could be filed, or a bond satisfactory to the Owner to indemnify the Owner against such lien. If such lien remains unsatisfied after payments are made, the Contractor shall refund to the Owner all money that the Owner may be compelled to pay in discharging such lien, including costs and reasonable attorneys' fees.

§ 15.7.2.1 Pursuant to Iowa state statutes, Contractor shall pay to the Unemployment Compensation Fund of the State of Iowa and the State Unemployment Insurance Trust Fund unemployment combined tax and interest due under the Employment Security Law on Wages paid to individuals employed in the performance of this contract. Before final payment of the final three percent (3%) of the contract amount may be made, and as part of the project closeout documentation, Contractor shall submit a written clearance from the Department of Labor of the State of Iowa certifying that all payments then due of combined tax or interest which may have arisen under this Contract, have been made by the Contractor or his or her Subcontractors to the Unemployment Compensation Fund. Contractor may, in lieu of providing the certification from the Department of Labor, provide and supply to the District a bond with a satisfactory surety company guaranteeing full payment to the Unemployment Compensation Fund and the State Unemployment Insurance Trust Fund of all combined tax and interest due under the Employment Security Law.

§ 15.7.3 The making of final payment shall constitute a waiver of claims by the Owner except those arising from

- .1 liens, claims, security interests or encumbrances arising out of the Contract and unsettled;
- .2 failure of the Work to comply with the requirements of the Contract Documents;
- .3 terms of special warranties required by the Contract Documents; or
- 4 audits performed by the Owner, if permitted by the Contract Documents, after final payment.

§ 15.7.4 Acceptance of final payment by the Contractor, a Subcontractor or supplier shall constitute a waiver of claims by that payee except those previously made in writing and identified by that payee as unsettled at the time of the final Application for Payment.

ARTICLE 16 PROTECTION OF PERSONS AND PROPERTY § 16.1 Safety Precautions and Programs

The Contractor shall be responsible for initiating, maintaining, and supervising all safety precautions and programs in connection with the performance of the Contract. The Contractor shall take reasonable precautions for safety of, and shall provide reasonable protection to prevent damage, injury, or loss to

- .1 employees on the Work and other persons who may be affected thereby;
- .2 the Work and materials and equipment to be incorporated therein, whether in storage on or off the site, under care, custody, or control of the Contractor, a Subcontractor, or a Sub-subcontractor; and
- .3 other property at the site or adjacent thereto, such as trees, shrubs, lawns, walks, pavements, roadways, structures and utilities not designated for removal, relocation, or replacement in the course of construction.

The Contractor shall comply with, and give notices required by, applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities bearing on safety of persons and property and their protection from damage, injury, or loss. The Contractor shall promptly remedy damage and loss to property caused in whole or in part by the Contractor, a Subcontractor, a sub-subcontractor, or anyone directly or indirectly employed by any of them, or by anyone for whose acts they may be liable and for which the Contractor is responsible under Sections 16.1.2 and 16.1.3. The Contractor may make a claim for the cost to remedy the damage or loss to the extent such damage or loss is attributable to acts or omissions of the Owner or Architect or by anyone for whose acts either of them may be liable, and not attributable to the fault or negligence of the Contractor. The foregoing obligations of the Contractor are in addition to the Contractor's obligations under Section 9.15.

§ 16.2 Hazardous Materials and Substances

§ 16.2.1 The Contractor is responsible for compliance with the requirements of the Contract Documents regarding hazardous materials or substances. If the Contractor encounters a hazardous material or substance not addressed in the Contract Documents, and if reasonable precautions will be inadequate to prevent foreseeable bodily injury or death to persons resulting from a material or substance, including but not limited to asbestos or polychlorinated biphenyl (PCB), encountered on the site by the Contractor, the Contractor shall, upon recognizing the condition, immediately stop Work in the affected area and notify the Owner and Architect of the condition. When the material or substance has been rendered harmless, Work in the affected area shall resume upon written agreement of the Owner and Contractor. By Change Order, the Contract Time shall be extended appropriately and the Contract Sum shall be increased in the amount of the Contractor's reasonable additional costs of shutdown, delay, and start-up.

§ 16.2.2 To the fullest extent permitted by law, the Owner shall indemnify and hold harmless the Contractor, Subcontractors, Architect, Architect's consultants, and agents and employees of any of them from and against claims, damages, losses, and expenses, including but not limited to attorneys' fees, arising out of or resulting from performance of the Work in the affected area, if in fact, the material or substance presents the risk of bodily injury or death as described in Section 16.2.1 and has not been rendered harmless, provided that such claim, damage, loss, or expense is attributable to bodily injury, sickness, disease or death, or to injury to or destruction of tangible property (other than the Work itself), except to the extent that such damage, loss, or expense is due to the fault or negligence of the party seeking indemnity.

§ 16.2.3 If, without negligence on the part of the Contractor, the Contractor is held liable by a government agency for the cost of remediation of a hazardous material or substance solely by reason of performing Work as required by the Contract Documents, the Owner shall indemnify the Contractor for all cost and expense thereby incurred.

ARTICLE 17 INSURANCE AND BONDS

§ 17.1 Contractor's Insurance

§ 17.1.1 The Contractor shall purchase and maintain insurance of the types and limits of liability, containing the endorsements, and subject to the terms and conditions, as described in this Section 17.1 or elsewhere in the Contract Documents. The Contractor shall purchase and maintain the insurance required by this Agreement from an insurance company or insurance companies lawfully authorized to issue insurance in the jurisdiction where the Project is located. The Contractor shall maintain the required insurance until the expiration of the period for correction of Work as set forth in Section 18.4, unless a different duration is stated below:

« »

§ 17.1.2 Commercial General Liability insurance for the Project written on an occurrence form with policy limits of not less than «One Million Dollars » (\$ «1,000,000 ») each occurrence, «Two Million Dollars (\$ «2,000,000 ») general aggregate, and Two Million Dollars (\$ «2,000,000 ») aggregate for products-completed operations hazard, providing coverage for claims including

- .1 damages because of bodily injury, sickness or disease, including occupational sickness or disease, and death of any person;
- .2 personal and advertising injury;
- .3 damages because of physical damage to or destruction of tangible property, including the loss of use of such property;
- .4 bodily injury or property damage arising out of completed operations; and
- .5 the Contractor's indemnity obligations under Section 9.15.

The Contractor's completed operations coverage shall be maintained for the period of time the Owner may be held legally liable for the Contractor's services, work, or conduct. On behalf of itself and its commercial general liability insurer, the Contractor waives subrogation in favor of the Owner; and further the Contractor shall cause such waiver of subrogation provision to be included in its commercial insurance policies to memorialize the same.

§ 17.1.3 Automobile Liability covering vehicles owned by the Contractor and non-owned vehicles used by the Contractor, with policy limits of not less than One Million Dollars » (\$ «1,000,000 ») per accident, for bodily injury, death of any person, and property damage arising out of the ownership, maintenance, and use of those motor vehicles along with any other statutorily required automobile coverage. On behalf of itself and its automobile

liability insurer, the Contractor waives subrogation in favor of the Owner; and further the Contractor shall cause such waiver of subrogation provision to be included in its commercial insurance policies to memorialize the same.

- § 17.1.4 The Contractor may achieve the required limits and coverage for Commercial General Liability and Automobile Liability through a combination of primary and excess or umbrella liability insurance, provided such primary and excess or umbrella insurance policies result in the same or greater coverage as those required under Section 17.1.2 and 17.1.3, and in no event shall any excess or umbrella liability insurance provide narrower coverage than the primary policy. The excess policy shall not require the exhaustion of the underlying limits only through the actual payment by the underlying insurers. On behalf of itself and its commercial umbrella/excess liability insurer, the Contractor waives subrogation in favor of the Owner; and further the Contractor shall cause such waiver of subrogation provision to be included in its commercial insurance policies to memorialize the same.
- § 17.1.5 Workers' Compensation at statutory limits. On behalf of itself and its workers compensation insurer, the Contractor waives subrogation in favor of the Owner; and further the Contractor shall cause such waiver of subrogation provision to be included in its commercial insurance policies to memorialize the same.
- § 17.1.6 Employers' Liability with policy limits not less than One Million Dollars (\$1,000,000) each accident, One Million Dollars (\$1,000,000) each employee, and One Million Dollars (\$1,000,000) policy limit. On behalf of itself and its employers' liability insurer, the Contractor waives subrogation in favor of the Owner; and further the Contractor shall cause such waiver of subrogation provision to be included in its commercial insurance policies to memorialize the same.
- § 17.1.7 If the Contractor is required to furnish professional services as part of the Work, the Contractor shall procure Professional Liability insurance covering performance of the professional services, with policy limits of not less than One Million Dollars (\$1,000,000) per claim and Two Million Dollars (\$2,000,000) in the aggregate. The coverage required in this section shall be maintained for at least five (5) years following termination of the Contract.
- § 17.1.8 If the Work involves the transport, dissemination, use, or release of pollutants, the Contractor shall procure Pollution Liability insurance, with policy limits of not less than One Million Dollars (\$1,000,000) per claim One Million Dollars (\$1,000,000) in the aggregate. The coverage required in this section shall be maintained for at least five (5) years following termination of the Contract.
- § 17.1.9 Coverage under Sections 17.1.7 and 17.1.8 may be procured through a Combined Professional Liability and Pollution Liability insurance policy, with combined policy limits of not less than Two Million Dollars (\$2,000,000) per claim and Two Million Dollars (\$2,000,000) in the aggregate.
- § 17.1.10 The Contractor shall provide certificates of insurance acceptable to the Owner evidencing compliance with the requirements in this Section 17.1 at the following times: (1) prior to commencement of the Work; (2) upon renewal or replacement of each required policy of insurance; and (3) upon the Owner's written request. An additional certificate evidencing continuation of liability coverage, including coverage for completed operations, shall be submitted with the final Application for Payment and thereafter upon renewal or replacement of such coverage until the expiration of the period required by Section 17.1.1. The certificates will show the Owner as an additional insured on the Contractor's Commercial General Liability and excess or umbrella liability policy. The Owner's acceptance of the Contractor's certificate(s) of insurance does not relieve any of the Contractor's responsibilities under the Contract and shall not constitute a waiver of the Contractor's obligation to provide insurance as required by this Contract. The Owner has the right to receive copies of any of the Contractor's insurance policies (including without limitation declaration pages, policy forms, and all endorsements) upon written request.
- § 17.1.11 The Contractor shall disclose to the Owner any deductible or self- insured retentions applicable to any insurance required to be provided by the Contractor.
- § 17.1.12 To the fullest extent permitted by law, the Contractor shall cause the commercial liability coverage required by this Section 17.1 (including without limitation Commercial General Liability and Commercial Umbrella/Excess Liability coverage) to include (1) the Owner, the Architect, and the Architect's Consultants as additional insureds for claims caused in whole or in part by the Contractor's negligent acts or omissions during the Contractor's operations; and (2) the Owner as an additional insured for claims caused in whole or in part by the Contractor's

negligent acts or omissions for which loss occurs during completed operations. Notwithstanding the foregoing, the Contractor shall NOT include the Owner as an additional insured on any policy required by Sections 17.1.7, 17.1.18, or 17.1.9 to the extent that such policies include any so-called "insured-versus-insured" exclusion. The additional insured coverage shall be primary and non-contributory to any of the Owner's general liability insurance policies and shall apply to both ongoing and completed operations. To the extent commercially available, the additional insured coverage shall be no less than that provided by Insurance Services Office, Inc. (ISO) forms CG 20 10 07 04, CG 20 37 07 04, and, with respect to the Architect and the Architect's Consultants, CG 20 32 07 04. The Owner shall continue as an additional insured, upon the terms herein, for the period of time the Owner may be held legally liable for the Contractors' services, Work, or conduct. The Contractor shall require all of its subcontractors to include the Owner as an additional insured, upon terms substantially identical to those stated above, on the subcontractors' Commercial General Liability coverage.

§ 17.1.13 Within three (3) business days of the date the Contractor becomes aware of an impending or actual cancellation or expiration of any insurance required by this Section 17.1, the Contractor shall provide notice to the Owner of such impending or actual cancellation or expiration. Upon receipt of notice from the Contractor, the Owner shall, unless the lapse in coverage arises from an act or omission of the Owner, have the right to stop the Work until the lapse in coverage has been cured by the procurement of replacement coverage by the Contractor. The furnishing of notice by the Contractor shall not relieve the Contractor of any contractual obligation to provide any required coverage.

§ 17.1.14 Other Insurance Provided by the Contractor

(List below any other insurance coverage to be provided by the Contractor and any applicable limits.)

Coverage Limits

§ 17.1.15

All of the coverage limits stated in this Section 17.1 are minimum insurance limits and shall not be construed in any way to limit the liability of the Contractor.

§ 17.1.16

The Contractor's insurance, whether or not specified above, shall be primary to any insurance maintained by the Owner.

§ 17.1.17

The Contractor must require that its subcontractors meet or excess the minimum insurance requirements in this Contract.

§ 17.2 Owner's Insurance

§ 17.2.1 Owner's Liability Insurance

The Owner shall be responsible for purchasing and maintaining the Owner's usual liability insurance.

§ 17.2.2 Property Insurance

§ 17.2.2.1 The Owner shall purchase and maintain, from an insurance company or insurance companies lawfully authorized to issue insurance in the jurisdiction where the Project is located, property insurance written on a builder's risk "all-risks" completed value or equivalent policy form and sufficient to cover the total value of the entire Project on a replacement cost basis. The Owner's property insurance coverage shall be no less than the amount of the initial Contract Sum, plus the value of subsequent Modifications and labor performed or materials or equipment supplied by others. The property insurance shall be maintained until Substantial Completion and thereafter as provided in Section 17.2.2.2, unless otherwise provided in the Contract Documents or otherwise agreed in writing by the parties to this Agreement. This insurance shall include the interests of the Owner, Contractor, Subcontractors, and Sub-subcontractors in the Project as insureds. This insurance shall include the interests of mortgagees as loss payees.

§ 17.2.2.2 Unless the parties agree otherwise, upon Substantial Completion, the Owner shall continue the insurance required by Section 17.2.2.1 or, if necessary, replace the insurance policy required under Section 17.2.2.1 with property insurance written for the total value of the Project that shall remain in effect until expiration of the period for correction of the Work set forth in Section 18.4.

§ 17.2.2.3 If the insurance required by this Section 17.2.2 is subject to deductibles or self-insured retentions, the Owner shall be responsible for all loss not covered because of such deductibles or retentions.

§ 17.2.2.4 If the Work involves remodeling an existing structure or constructing an addition to an existing structure, the Owner shall purchase and maintain, until the expiration of the period for correction of Work as set forth in Section 18.4, "all-risks" property insurance, on a replacement cost basis, protecting the existing structure against direct physical loss or damage, notwithstanding the undertaking of the Work. The Owner shall be responsible for all co-insurance penalties.

§ 17.2.2.5 Prior to commencement of the Work, the Owner shall secure the insurance, and provide evidence of the coverage, required under this Section 17.2.2 and, upon the Contractor's request, provide a copy of the property insurance policy or policies required by this Section 17.2.2. The copy of the policy or policies provided shall contain all applicable conditions, definitions, exclusions, and endorsements.

§ 17.2.2.6 Within three (3) business days of the date the Owner becomes aware of an impending or actual cancellation or expiration of any insurance required by this Section 17.2.2, the Owner shall provide notice to the Contractor of such impending or actual cancellation or expiration. Unless the lapse in coverage arises from an act or omission of the Contractor: (1) the Contractor, upon receipt of notice from the Owner, shall have the right to stop the Work until the lapse in coverage has been cured by the procurement of replacement coverage by either the Owner or the Contractor; (2) the Contract Time and Contract Sum shall be equitably adjusted; and (3) the Owner waives all rights against the Contractor, Subcontractors, and Sub-subcontractors to the extent any loss to the Owner would have been covered by the insurance had it not expired or been cancelled. If the Contractor purchases replacement coverage, the cost of the insurance shall be charged to the Owner by an appropriate Change Order. The furnishing of notice by the Owner shall not relieve the Owner of any contractual obligation to provide required insurance.

§ 17.3 Performance Bond and Payment Bond

§ 17.3.1 The Contractor shall provide surety bonds, from a company or companies lawfully authorized to issue surety bonds in the jurisdiction where the Project is located, as follows:

Payment Bond in an amount not less than 100% of the Contract Sum through a corporate surety company, conditioned for the payment of all laborers and mechanics for labor that is performed and for the payment for material and equipment rental which is actually used or rented in the performance of the Contract.

Performance Bond In an amount not less than 100% of the Contract Sum.

§ 17.3.2 Upon the request of any person or entity appearing to be a potential beneficiary of bonds covering payment of obligations arising under the Contract, the Contractor shall promptly furnish a copy of the bonds or shall authorize a copy to be furnished.

ARTICLE 18 CORRECTION OF WORK

§ 18.1 The Contractor shall promptly correct Work rejected by the Architect or failing to conform to the requirements of the Contract Documents, whether discovered before or after Substantial Completion and whether or not fabricated, installed, or completed. Costs of correcting such rejected Work, including additional testing and inspections, the cost of uncovering and replacement, and compensation for the Architect's services and expenses made necessary thereby, shall be at the Contractor's expense, unless compensable under Section A.1.7.3 in Exhibit A, Determination of the Cost of the Work.

§ 18.2 In addition to the Contractor's obligations under Section 9.4, if, within one year after the date of Final Completion of the Work or designated portion thereof or after the date for commencement of warranties established under Section 15.6.3, or by terms of an applicable special warranty required by the Contract Documents, any of the Work is found to be not in accordance with the requirements of the Contract Documents, the Contractor shall correct it promptly after receipt of notice from the Owner to do so unless the Owner has previously given the Contractor a written acceptance of such condition. The Owner shall give such notice promptly after discovery of the condition. During the one-year period for correction of Work, if the Owner fails to notify the Contractor and give the

Contractor an opportunity to make the correction, the Owner waives the rights to require correction by the Contractor and to make a claim for breach of warranty.

§ 18.3 If the Contractor fails to correct nonconforming Work within a reasonable time, the Owner may correct it in accordance with Section 8.3.

§ 18.4 The one-year period for correction of Work shall be extended with respect to portions of Work first performed after Substantial Completion by the period of time between Substantial Completion and the actual completion of that portion of the Work.

§ 18.5 Upon completion of any Work under or pursuant to this Article 18, the one (1)-year correction period in connection with the Work requiring correction shall be renewed and recommence. The obligations under Article 18 shall cover any repairs and replacement to any part of the Work or other property that is damaged by the defective Work.

ARTICLE 19 MISCELLANEOUS PROVISIONS

§ 19.1 Assignment of Contract

Neither party to the Contract shall assign the Contract without written consent of the other, except that the Owner may, without consent of the Contractor, assign the Contract to a lender providing construction financing for the Project if the lender assumes the Owner's rights and obligations under the Contract Documents. The Contractor shall execute all consents reasonably required to facilitate such assignment.

§ 19.2 Governing Law

The Contract shall be governed by the laws of the State of Iowa.

§ 19.3 Tests and Inspections

Tests, inspections and approvals of the portions of Work required by the Contract Documents or by laws, ordinances, or rules and regulations, or orders of public authorities having jurisdiction shall be made at the appropriate time. Unless otherwise provided, the Contractor shall make arrangements for such tests, inspections and approval with an independent testing laboratory acceptable to the Architect or with the appropriate public authority and Owner shall bear all related costs of tests, inspections and approvals. The Contractor shall give the Architect timely notice of when and where tests and inspections are to be made so that the Architect may be present for such procedures...

§ 19.4 The Owner's representative:

(Name, address, email address and other information)

- « Brett Wallace Project Advocates, Owner's Representative »
- « 1313 Cuming Street, Suite 200 »
- « Omaha, NE 68102 »
- « Phone: 402-578-7216 « »

§ 19.5 The Contractor's representative:

(Name, address, email address and other information)

‹ ‹	« »			
‹ ‹	« »			
‹ ‹	« »			
‹ ‹	« »			
‹ ‹	« »			
‹ ‹	« »			

§ 19.6 Neither the Owner's nor the Contractor's representative shall be changed without ten days' prior notice to the other party.

- § 19.7 The Contractor and all Subcontractors, if any, shall not discriminate against any employee or applicant who is to be employed for performance of this Agreement with respect to his or her hire, tenure, terms, conditions, or privileges of employment, because of his race, color, religion, sex, disability, or national origin.
- § 19.8 The Contractor and all Subcontractors, if any, shall not manufacture, sell, distribute, dispense, possess or use controlled substances or marijuana, as defined by Iowa law, during the performance of this Agreement while on school premises or at school related functions. The Contractor and all Subcontractors, if any, shall not possess any weapon, as defined by Iowa law and the federal "Drug-Free Schools Act," on school property or at school related functions. The Contractor and all Subcontractor, if any, also shall adhere to all District's policies and regulations that prohibit the possession, distribution, sale, dispensation, or use of any alcohol or tobacco products while on school premises or at school related functions. Failure to comply with this provision may be considered a material breach. The District may suspend or terminate the Contractor, Subcontractor, or both if it violates these laws, regulations, or policies or this provision.
- § 19.9 No delay or omission by either of the parties hereto in exercising any right or power accruing upon the noncompliance or failure of performance by the other party hereto of any of the provisions of this Agreement shall impair any such right or power or be construed to be as waiver thereof. A waiver by either of the parties hereto of any of the covenants, conditions or agreements hereof to be performed by the other party hereto shall not be construed to be a waiver of any subsequent breach thereof or of any other covenant, condition or agreement herein contained.
- § 19.10 The Contractor acknowledges that the Owner must comply with Iowa state statutes and release public records as defined law upon request, which may include this Agreement and all records created and maintained in relation to this Agreement.
- § 19.11 When present on Owner's property, Contractor and its employees and subcontractors or anyone directly or indirectly employed by or representing any of them, shall:
 - .1 wear uniform at all times with company identification;
 - .2 carry photo identification;
 - .3 not smoke or otherwise use tobacco;
 - .4 not use, or be under the influence of, alcohol or drugs;
 - .5 not carry a firearm or other weapon; and
 - .6 comply with all of the school district's rules, policies, procedures which are intended to protect the safety and health of its faculty, staff, students, and visitors
- § 19.12 The Contractor shall conduct a background check for all employees or subcontractors providing services under this Agreement in a manner approved by Owner. Owner will determine if the person is authorized to provide services, in accordance with state, federal and local policy.
- § 19.13 The Contractor represents and warrants the following to the Owner (in addition to any other representations and warranties contained in the Contract Documents), as an inducement to the Owner to execute this Agreement, which representations and warranties shall survive the execution and delivery of this Agreement, any termination of this Agreement, and the final completion of the Work:
 - .1 that it and its Subcontractors are financially solvent, able to pay all debts as they mature, and possessed of sufficient working capital to complete the Work and perform all obligations hereunder;
 - .2 that it is able to furnish the plant, tools, materials, supplies, equipment, and labor required to complete the Work and perform its obligations hereunder;
 - .3 that it is authorized to do business in the State of Iowa and properly licensed by all necessary governmental and public and quasi-public authorities having jurisdiction over it and over the Work and the Project;
 - .4 that its execution of this Agreement and its performance thereof is within its duly authorized powers;
 - .5 that its duly authorized representative has visited the site of the Project, familiarized himself with the local and special conditions under which the Work is to be performed, and correlated his observations with the

requirements of the Contract Documents; and

.6 that it possesses a high level of experience and expertise in the business administration, construction, construction management, and superintendence of projects of the size, complexity, and nature of this particular Project, and it will perform the work with the care, skill, and diligence of such a contractor.

The foregoing warranties are in addition to, and not in lieu of, any and all other liability imposed upon the Contractor by law with respect to the Contractor's duties, obligations, and performance hereunder. The Contractor acknowledges that the Owner is relying upon the Contractor's skill and experience in connection with the Work called for hereunder.

§ 19.14 The Contractor shall maintain fair labor standards throughout the performance of this Contract. The Contractor shall file with the Owner a statement that the Contractor is complying with, and will continue to comply with, fair labor standards in the pursuit of its business and in the execution of the Contract. Any additional contract entered into between Contractor and Owner shall include a provision that in the execution of the contract, fair labor standards shall be maintained. For purposes of this section, the phrase "fair labor standards" means such a scale of wages and conditions of employment as are paid and maintained by at least fifty percent of the contractors in the same business or field of endeavor as the Contractor.

§ 19.15 The Contractor shall pay to the Unemployment Compensation Fund of the State of Iowa and the State Unemployment Insurance Trust Fund unemployment combined tax and interest due under the Employment Security Law on wages paid to individuals employed in the performance of the Contract as required by Iowa state statutes.

§ 19.16 The Contractor shall use a federal immigration verification system to determine the work eligibility status of employees hired on or after October 1, 2009 and who are physically performing services within the State of Iowa. If the Contractor employs or contracts with any Subcontractor or other service provider in connection with this Agreement, the Contractor shall include a provision in the contract requiring the Subcontractor or other service provider to use a federal immigration verification system to determine the work eligibility status of new employees physically performing services within the State of Iowa.

§ 19.17 The failure of either party to exercise any of its rights under this Agreement for a breach or violation thereof shall not be deemed to be a waiver of such rights or a waiver of any subsequent breach or violation.

ARTICLE 20 TERMINATION OF THE CONTRACT

§ 20.1 Termination by the Contractor

If the Owner shall fail, for a period of thirty (30) days after receipt of the Certificate, to make payment to the Contractor in accordance with Certificates of Completion submitted to the Owner by the Architect as provided by Subparagraph 4.1.3 of this Agreement, the Contractor may upon seven (7) additional days written notice to the Owner and Architect terminate the Contract and recover from the Owner payment for Work completed.

§ 20.2 Termination by the Owner for Cause

§ 20.2.1 The Owner may terminate the Contract if the Contractor

- .1 repeatedly refuses or fails to supply enough properly skilled workers or proper materials;
- .2 fails to make payment to Subcontractors for materials or labor in accordance with the respective agreements between the Contractor and the Subcontractors;
- .3 repeatedly disregards applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of a public authority; or
- .4 otherwise is guilty of substantial breach of a provision of the Contract Documents.

§ 20.2.2 When any of the reasons described in Section 20.2.1 exists, the Owner, upon certification by the Architect that sufficient cause exists to justify such action, may, without prejudice to any other remedy the Owner may have and after giving the Contractor seven days' notice, terminate the Contract and take possession of the site and of all materials, equipment, tools, and construction equipment and machinery thereon owned by the Contractor and may finish the Work by whatever reasonable method the Owner may deem expedient. Upon request of the Contractor,

the Owner shall furnish to the Contractor a detailed accounting of the costs incurred by the Owner in finishing the Work.

§ 20.2.3 When the Owner terminates the Contract for one of the reasons stated in Section 20.2.1, the Contractor shall not be entitled to receive further payment until the Work is finished.

§ 20.2.4 If the unpaid balance of the Contract Sum exceeds costs of finishing the Work, including compensation for the Architect's services and expenses made necessary thereby, and other damages incurred by the Owner and not expressly waived, such excess shall be paid to the Contractor. If such costs and damages exceed the unpaid balance, the Contractor shall pay the difference to the Owner. The amount to be paid to the Contractor or Owner, as the case may be, shall be certified by the Architect, upon application, and this obligation for payment shall survive termination of the Contract.

§ 20.3 Termination by the Owner for Convenience

The Owner may, at any time, terminate the Contract for the Owner's convenience and without cause. The Owner shall pay the Contractor for Work executed; and costs incurred by reason of such termination, including costs attributable to termination of Subcontracts; and a termination fee, if any, as follows:

(Insert the amount of or method for determining the fee payable to the Contractor by the Owner following a termination for the Owner's convenience, if any.)

« »

ARTICLE 21 CLAIMS AND DISPUTES

- § 21.1 A claim is a demand or assertion by one of the parties seeking, as a matter of right, payment of money, or other relief with respect to the terms of the Contract. The term Claim also includes other disputes and matters in question between the Owner and Contractor arising out of or relating to the Contract. The responsibility to substantiate Claims shall rest with the party making the Claim.
- § 21.1.2 Claims by either the Owner or Contractor must be initiated by written notice to the other party and to the Architect as the Initial Decision Maker. Claims by either party must be initiated within 21 days after occurrence of the event giving rise to such Claim or within 21 days after the claimant first recognizes the condition giving rise to the Claim, whichever is later.
- § 21.1.3 Pending final resolution of a Claim, except as otherwise agreed in writing, the Contractor shall proceed diligently with performance of the Contract and the Owner shall continue to make payments in accordance with the Contract Documents. The Architect will prepare Change Orders and issue Certificates for Payment in accordance with the decisions of the Architect.
- § 21.1.4 If the Contractor wishes to make a Claim for an increase in the Contract Sum, written notice as provided herein shall be given before proceeding to execute the Work. Prior notice is not required for Claims relating to an emergency endangering life or property.
- § 21.1.5 If the Contractor wishes to make a Claim for an increase in the Contract Time, written notice as provided herein shall be given. The Contractor's Claim shall include an estimate of cost and of probable effect of delay on progress of the Work. In the case of a continuing delay, only one Claim is necessary.
- § 21.1.6 If adverse weather conditions are the basis for a Claim for additional time, such Claim shall be documented by data substantiating that weather conditions were abnormal for the period of time, could not have been reasonably anticipated and had an adverse effect on the scheduled construction.
- § 21.1.7 When the Contractor makes a claim for additional time as provided in paragraphs 21.1.2 and 21.1.5 and is assessed liquidated damages, Contractor may accept final payment under 2.3.3 and 4.2 and such acceptance shall not serve as a waiver of Contractor's claim for additional time or objection to the assessment of liquidated damages.

§ 21.2 - INITIAL DECISION

§ 21.2.1 Claims shall be referred to the Architect for initial decision. The Architect will serve as the Initial Decision Maker, unless otherwise indicated in the Agreement. An initial decision shall be required as a condition precedent to litigation of any Claim arising prior to the date final payment is due, unless 30 days have passed after the Claim

parties agree, the Architect will not decide disputes between the Contractor and persons or entities other than the Owner. § 21.2.2 The Architect will review Claims and within ten days of the receipt of a Claim and take one or more of the following actions: (1) request additional supporting data from the claimant or a response with supporting data from the other party, (2) reject the Claim in whole or in part, (3) approve the Claim, (4) suggest a compromise, or (5) advise the parties that the Architect is unable to resolve the Claim if the Architect lacks sufficient information to evaluate the merits of the Claim or if the Architect concludes that, in the Architect's sole discretion, it would be inappropriate for the Architect to resolve the Claim. § 21.2.3 In evaluating Claims, the Architect may, but shall not be obligated to, consult with or seek information from either party or from persons with special knowledge or expertise who may assist the Architect in rendering a decision. The Architect may request the Owner to authorize retention of such persons at the Owner's expense. § 21.2.4 If the Architect requests a party to provide a response to a Claim or to furnish additional supporting data, such party shall respond, within ten days after receipt of such request, and shall either (1) provide a response on the requested supporting data, (2) advise the Architect when the response or supporting data will be furnished or (3) advise the Architect that no supporting data will be furnished. Upon receipt of the response or supporting data, if any, the Architect will either reject or approve the Claim in whole or in part. § 21.2.5 The Architect will render an initial decision approving or rejecting the Claim, or indicating that the Architect is unable to resolve the Claim. This initial decision shall (1) be in writing; (2) state the reasons therefor; and (3) notify the parties and the Architect of any change in the Contract Sum or Contract Time or both. The initial decision shall be final and binding on the parties but subject to mediation and, if the parties fail to resolve their dispute through mediation, to binding dispute resolution. § 21.2.6 In the event of a Claim against the Contractor, the Owner may, but is not obligated to, notify the surety, if any, of the nature and amount of the Claim. If the Claim relates to a possibility of a Contractor's default, the Owner may, but is not obligated to, notify the surety and request the surety's assistance in resolving the controversy. This Agreement entered into as of the day and year first written above. **OWNER** (Signature) **CONTRACTOR** (Signature)

(Printed name and title)

has been referred to the Architect with no decision having been rendered. Unless the Architect and all affected

(Printed name and title)

SECTION 02 41 00 DEMOLITION

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Selective demolition of building elements for alteration purposes.

1.02 RELATED REQUIREMENTS

- A. Section 01 10 00 Summary: Limitations on Contractor's use of site and premises.
- B. Section 01 10 00 Summary: Description of items to be salvaged or removed for re-use by Contractor.
- C. Section 01 50 00 Temporary Facilities and Controls: Site fences, security, protective barriers, and waste removal.
- D. Section 01 60 00 Product Requirements: Handling and storage of items removed for salvage and relocation.
- E. Section 01 78 00 Closeout Submittals: Project conditions; protection of bench marks, survey control points, and existing construction to remain; reinstallation of removed products; temporary bracing and shoring.

1.03 REFERENCE STANDARDS

A. NFPA 241 - Standard for Safeguarding Construction, Alteration, and Demolition Operations; 2022, with Errata (2021).

1.04 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements for submittal procedures.
- B. Site Plan: Indicate:
 - 1. Areas for temporary construction and field offices.
- Project Record Documents: Accurately record actual locations of capped and active utilities and subsurface construction.

1.05 QUALITY ASSURANCE

- A. Pre-Demolition Conference:
 - Once the ceilings have been removed, prior to any demolition related to any walls and/or structural items, the General Contractor shall hold a Pre-Demolition Conference with the General Contractor, Demolition Sub-Contractor, Architect, Structural Engineer and Owner to review limits of demolition and the Contractor's proposed means and methods to perform the work.

PART 2 PRODUCTS

2.01 MATERIALS

A. Not Used.

PART 3 EXECUTION

3.01 DEMOLITION

- A. Refer to Drawings for scope of demolition.
- B. Remove other items indicated, for salvage, relocation, and recycling.

3.02 GENERAL PROCEDURES AND PROJECT CONDITIONS

- A. The Contractor shall thoroughly review the site, the building, and the Bidding Documents before submittal of bids in order to determine the scope of the demolition involved.
- B. Comply with applicable codes and regulations for demolition operations and safety of adjacent structures and the public.
 - 1. Obtain required permits.

- 2. Comply with applicable requirements of NFPA 241.
- Take precautions to prevent catastrophic or uncontrolled collapse of structures to be removed; do not allow worker or public access within range of potential collapse of unstable structures.
- 4. Provide, erect, and maintain temporary barriers and security devices.
- 5. Use physical barriers to prevent access to areas that could be hazardous to workers or the public.
- 6. Conduct operations to minimize effects on and interference with adjacent structures and occupants.
- 7. Do not close or obstruct roadways or sidewalks without permits from authority having jurisdiction.
- 8. Conduct operations to minimize obstruction of public and private entrances and exits. Do not obstruct required exits at any time. Protect persons using entrances and exits from removal operations.
- 9. Obtain written permission from owners of adjacent properties when demolition equipment will traverse, infringe upon, or limit access to their property.
- C. Do not begin removal until receipt of notification to proceed from Owner.
- D. Protect existing structures and other elements to remain in place and not removed.
 - 1. Provide bracing and shoring.
 - 2. Prevent movement or settlement of adjacent structures.
 - 3. Stop work immediately if adjacent structures appear to be in danger.
- E. Minimize production of dust due to demolition operations. Do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.
- F. Hazardous Materials:
 - 1. If hazardous materials are discovered during removal operations, stop work and notify Architect and Owner; hazardous materials include regulated asbestos containing materials, lead, PCBs, and mercury.
 - 2. If the Contractor discovers material which he/she suspects may contain asbestos, he/she shall immediately notify the Owner and cease work in close proximity to the suspected asbestos containing material. The Owner will then arrange for the testing and removal of the asbestos material. If time delays are encountered because of required asbestos removal work, the schedule shall be adjusted accordingly by Change Order.
- G. The Contractor shall be responsible for providing all necessary temporary shoring and supports as required during removal of existing walls, floors, and other structural items and until final structural replacement items are in place. He/she shall be responsible for damage to existing facilities which are scheduled to remain caused by his/her demolition operations. The Architect/Engineer will not be responsible for problems/accidents which occur because of the Contractor's failure to thoroughly inspect the structure and review the drawings of the existing building before removing such items. A copy of the Owner's drawings of the existing building will be made available for review at the Owner's office prior to receipt of bids and during construction of the project. These drawings may be helpful to the Contractor in determining the sequence or methods of removal for certain items. The Contractor shall be responsible for verifying the accuracy of such existing drawings before making decisions regarding demolition based upon them.

3.03 EXISTING UTILITIES

- A. Coordinate work with utility companies. Notify utilities before starting work, comply with their requirements, and obtain required permits.
- B. Protect existing utilities to remain from damage.
- C. Do not disrupt public utilities without permit from authority having jurisdiction.
- D. Do not close, shut off, or disrupt existing life safety systems that are in use without at least 7 days prior written notification to Owner.

Morrissey Project No.: 25336

DEMOLITION
02 41 00 - 2

- E. Do not close, shut off, or disrupt existing utility branches or take-offs that are in use without at least 3 days prior written notification to Owner.
- F. Locate and mark utilities to remain; mark using highly visible tags or flags, with identification of utility type; protect from damage due to subsequent construction, using substantial barricades if necessary.
- G. Remove exposed piping, valves, meters, equipment, supports, and foundations of disconnected and abandoned utilities.
- H. Prepare building demolition areas by disconnecting and capping utilities outside the demolition zone. Identify and mark, in same manner as other utilities to remain, utilities to be reconnected.

3.04 SELECTIVE DEMOLITION FOR ALTERATIONS

- A. Existing construction and utilities indicated on drawings are based on casual field observation and existing record documents only.
 - 1. Verify construction and utility arrangements are as indicated.
 - 2. Report discrepancies to Architect before disturbing existing installation.
 - 3. Beginning of demolition work constitutes acceptance of existing conditions that would be apparent upon examination prior to starting demolition.
- B. Separate areas in which demolition is being conducted from areas that remain occupied.
 - 1. Provide, erect, and maintain temporary 1-hour fire-rated partitions to separate areas of the building under construction from areas occupied by the Owner. Coordinate the locations of these walls with the local Authority having Jurisdiction to meet egress requirements.
- C. Maintain weatherproof exterior building enclosure, except for interruptions required for replacement or modifications; prevent water and humidity damage.
- D. Remove existing work as indicated and required to accomplish new work.
 - 1. Remove items indicated on drawings.
 - 2. Items to be removed and reinstalled by the Contractor shall be as follows:
 - a. Certain ATC Pads and Grid.
 - b. Other items so noted on the Drawings.
- E. Services (Including but not limited to HVAC): Remove existing systems and equipment as indicated.
 - 1. Maintain existing active systems to remain in operation, and maintain access to equipment and operational components.
 - 2. Verify that abandoned services serve only abandoned facilities before removal.
 - 3. Remove abandoned pipe, ducts, conduits, and equipment, including those above accessible ceilings. Remove back to source of supply where possible, otherwise cap stub and tag with identification.
- F. Protect existing work to remain.
 - 1. Prevent movement of structure. Provide shoring and bracing as required.
 - 2. Perform cutting to accomplish removal work neatly and as specified for cutting new work.
 - 3. Repair adjacent construction and finishes damaged during removal work.
 - 4. Patch to match new work.

3.05 DEBRIS AND WASTE REMOVAL

- A. Remove debris, junk, and trash from site.
- B. Materials shall not be stored on the site for sale, nor shall the Contractor conduct any sale on the site. The Owner reserves the right to remove any materials scheduled for demolition prior to the scheduled time of removal and to retain such materials as their property.
- C. Leave site in clean condition, ready for subsequent work.
- D. Clean up spillage and wind-blown debris from public and private lands.

END OF SECTION

Morrissey Project No.: 25336

DEMOLITION
02 41 00 - 3

SECTION 07 53 23 EPDM THERMOSET SINGLE-PLY ROOFING

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Adhered roof system with ethylene propylene diene monomer (EPDM) roofing membrane.
- B. Roof insulation.
- C. Cover boards.

1.02 REFERENCE STANDARDS

- A. ASCE 7 Minimum Design Loads and Associated Criteria for Buildings and Other Structures; Most Recent Edition Cited by Referring Code or Reference Standard.
- B. ASTM C1289 Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board; 2025.
- C. ASTM D4637/D4637M Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane; 2015, with Editorial Revision (2022).
- D. FM 4470 Examination Standard for Single-Ply, Polymer-Modified Bitumen Sheet, Built-Up Roof (BUR) and Liquid Applied Roof Assemblies for Use in Class 1 and Noncombustible Roof Deck Construction; 2022.

1.03 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements for submittal procedures.
- B. Product Data: Provide data indicating membrane materials, flashing materials, insulation, and fasteners.
- C. Shop Drawings: Provide roofing system plans, elevations, sections, details, and attachment details to other work, including:
 - 1. Base flashings, cants, and membrane terminations.
 - Tapered insulation, including slopes.
 - 3. Crickets, saddles, and tapered edge strips, including slopes.
 - 4. Insulation fastening patterns.
- D. Samples: Provide for each product specified.
- E. Manufacturer's qualification statement.
- F. Guarantees: Provide manufacturer's current guarantee specimen for the following:
 - Roofing subcontractor to provide copy of final System Assembly Letter issued by Johns Manville Roofing Systems, indicating products and system installed eligible to receive specified manufacturer's guarantee when installed by certified Johns Manville contractor, in accordance with manufacturer's application requirements, and inspected and approved by Johns Manville technical representative.

1.04 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section with minimum three years of documented experience.
- B. Installer Qualifications: Company specializing in performing work of this section with minimum three years documented experience, and approved by manufacturer.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials in manufacturer's original containers, dry and undamaged, with seals and labels intact, product brand name, type, date of manufacture, and directions for storage.
- B. Store materials in weather-protected environment; do not place directly on ground, and protect from moisture.

Morrissey Project No.: 25336 EPDM THERMOSET SINGLE-PLY ROOFING 07 53 23 - 1

- C. Ensure materials' storage and staging does not exceed static and dynamic loadbearing roof decking capacities.
- D. Protect roof insulation materials from physical damage and deterioration by sunlight, moisture, soiling, and other sources. Comply with insulation manufacturer's written instructions for handling, storing, and protection during installation.
- E. Protect foam insulation from direct exposure to sunlight.

1.06 FIELD CONDITIONS

- A. Do not apply roofing membrane during unsuitable weather.
- B. Do not apply roofing membrane when ambient temperature below 40 degrees F or above manufacturer's recommended maximum temperature.
- C. Do not apply roofing membrane to damp or frozen deck surface or when precipitation expected or occurring.
- D. Protect materials vulnerable to water or sun damage during day that work occurs.
- E. Schedule applications so no partially completed roof sections left exposed at end of workday.

1.07 WARRANTY

- A. See Section 01 78 00 Closeout Submittals for additional warranty requirements.
- B. Provide manufacturer's system guarantee equal to Johns Manville's Peak Advantage No Dollar Limit Roofing System Guarantee:
 - 1. Warranty Period: 20 years from Date of Substantial Completion.
- C. Existing Warranties: Ensure warranties on existing building elements not affected by project scope of work. Installer responsible for coordinating with building Owner's representative to verify compliance.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Johns Manville Commercial Roofing Systems: www.jm.com/#sle.
- B. Source Limitations: Furnish products produced by single manufacturer and obtained from single supplier.

2.02 PERFORMANCE CRITERIA

- A. General: Install watertight roofing membrane system, resist specified wind uplift pressures, thermally induced movement, and exposure to weather without failure.
- B. Material Compatibility: Ensure roofing materials compatible with one another under conditions of service and application required, as demonstrated by roofing system manufacturer based on testing and field experience.
- C. Installer to comply with current code requirements from authority having jurisdiction.
- D. Wind Uplift Performance: Roofing system to meet intent of systems successfully tested by qualified testing and inspecting agency to resist wind uplift pressure calculated in accordance with ASCE 7.

2.03 EPDM MEMBRANES

- A. EPDM Membrane Materials:
 - Nonreinforced uniform, flexible sheet made from Ethylene Propylene Diene Monomer, ASTM D4637/D4637M, Type I.
 - 2. Thickness and Color: To match existing.

2.04 ROOF INSULATION

- A. Standard:
 - Preformed roof insulation boards complying with requirements and referenced standards, selected from material sizes and thicknesses indicated.

Morrissey Project No.: 25336 EPDM THERMOSET SINGLE-PLY ROOFING 07 53 23 - 2

- 2. Minimum Long-Term Thermal Resistance (LTTR): 5.7 per inch, determined in accordance with CAN-ULC-S770 at 75 degrees F.
 - a. Polyisocyanurate Board Insulation:
 - 1) In accordance with ASTM C1289, Type II, Class 1, Grade 2 (20 psi).
- Products: JM ENRGY 3.
- B. Tapered Insulation:
 - 1. Factory-tapered insulation boards fabricated to slope of .25 inch per 12 inches, 1:48, unless indicated otherwise.
 - a. Polyisocyanurate Board Insulation, Tapered:
 - 1) In accordance with ASTM C1289, Type II, Class 1, Grade 2 (20 psi).
 - Products: JM Tapered ENRGY 3.
- C. Insulation Accessories:

b.

- 1. General: Roof insulation accessories recommended by insulation manufacturer for intended use and compatible with membrane roofing.
 - a. Fasteners: Factory-coated steel fasteners with metal or plastic plates designed for fastening roof insulation to substrate and furnished by roofing system manufacturer. Comply with corrosion-resistant provisions in FM 4470.

2.05 COVER BOARDS

- A. High-Density Polyisocyanurate: Faced with high-density polyisocyanurate technology, complying with ASTM C1289.
 - 1. Classifications:
 - a. Type II Bonded in-line to inorganic coated glass facer.
 - 1) Board Thickness: To match existing.
 - 2) Products: JM ProtectoR HD.

2.06 EDGE METAL COMPONENTS

- A. Expansion Joints: Provide factory-fabricated, weatherproof exterior covers for expansion joint openings consisting of flexible rubber membrane, supported by closed-cell foam to form flexible bellows, with two metal flanges, adhesively and mechanically combined to bellows via bifurcation process. Provide product both manufactured and marketed by single-source membrane supplier, included in No Dollar Limit Guarantee.
 - 1. Products: JM Expand-O-Flash.

2.07 AUXILIARY ROOFING MATERIALS

- A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with membrane roofing:
- B. Sheet Flashing: Internally reinforced or scrim reinforced.
 - Product: JM EPDM Peel & Stick Flashing.
- C. Liquid-Applied Flashing: Single-ply liquid and fabric-reinforced flashing system created with fleece polyester scrim and two-component, polyurethane-based, liquid-applied flashing material, consisting of liquid resin.
 - 1. Products: JM SP Liquid Flashing Resin and JM SP Liquid Flashing Scrim curing agent.
- D. Seaming Material: Butyl splice tape with release film.
 - 1. Product: 3 inches wide, minimum, EPDM Seam Tape Plus butyl splice tape.
- E. Sealing Strip: 6 inches wide, 45 mil, 0.045 inch thick minimum, cured EPDM with factory-laminated, self-adhering seam tape.
 - 1. Product: JM EPDM Peel & Stick Sealing Strip.
- F. Bonding Adhesive: Solvent-based bonding adhesive for membrane. Serviceable Installation Ambient Air Temperature: 25 degrees F and rising.
 - 1. Products: JM All Season Sprayable Bonding Adhesive.

- G. Flashing Adhesive: Solvent-based bonding adhesive for base flashings. Serviceable Installation Ambient Air Temperature: 25 degrees F and rising.
 - Products: JM Membrane Bonding Adhesive (TPO and EPDM).
- H. Slip Sheet: Manufacturer recommended slip sheet of type required for application.
- Metal Termination Bars: Standard predrilled stainless steel or aluminum bars with anchors.
- Fasteners: Factory-coated steel fasteners and metal plates meeting corrosion-resistance provisions in FM 4470, designed for fastening membrane to substrate and acceptable to membrane roofing system manufacturer.
- Miscellaneous Accessories: Provide accessories to meet roofing manufacturer's warranty requirements.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify surfaces and site conditions ready to receive work.
- B. Verify deck supported and secure.
- C. Verify deck clean and smooth, flat, free of depressions, waves, or projections, sloped according to drawings and correct installation of roof system.
- D. Verify deck surfaces dry and free of snow or ice.
- E. Verify roof openings, curbs, blocking, nailers, and penetrations through roof are solidly set, and cant strips in place. Thickness of nailers to match thickness of insulation.
- F. Ensure rigidity and proper slope for drainage for decking materials.
- G. Bring unacceptable panels to the attention of General Contractor and Project Owner's Representative and correct or replace with appropriate panels of like material prior to installation of roofing system.
- H. Metal Deck
 - 1. Verify decking visibly dry and free of moisture.
 - Verify decking is smooth, free of visible cracks, holes, or sharp changes in surface elevation.

3.02 PREPARATION

A. General

- Clean and remove from substrate sharp projections, dust, debris, moisture, and other substances detrimental to roofing installation, in accordance with roofing system manufacturer's written instructions.
- Prevent materials from entering and clogging roof drains and conductors and from spilling 2. or migrating onto other adjacent surfaces.
- Proceed with installation steps only after correcting unsatisfactory conditions. 3.

B. Reroofing Preparation

- Remove area no larger than one day's worth of reroofing. Remove roofing membrane. surfacing, coverboards, insulation, fasteners, asphalt, pitch, adhesives, and other related materials.
- Tear out base flashings, counterflashings, pitch pans, pipe flashings, vents, sumps, and 2. like components necessary for new membrane applications.
- Remove abandoned equipment curbs, skylights, smoke hatches, and penetrations. Install 3. new decking to match existing, adjoining decking material.
- Raise HVAC units and other equipment supported by curbs to conform with the following: 4.
 - If necessary, disconnect connections to existing HVAC units, work done by appropriate, licensed tradesmen, and coordinated by General Contractor.
 - Modify curbs as required to provide minimum 8 inches of base flashing height measured from surface of new membrane to top of flashing membrane.

Morrissey Project No.: 25336 07 53 23 - 4

- c. Secure existing flashing and install new metal counterflashing prior to reinstallation of units.
- d. Elevate perimeter nailers to match elevation of new roof insulation.
- Ensure removal of roof surface debris. Do not store demolished roof system material on roof surface.

3.03 INSTALLATION - MEMBRANE

- A. Roll out membrane, free from wrinkles or tears. Place sheet into place without stretching.
- B. Shingle joints on sloped substrate in direction of drainage.
- C. Cooperate with testing and inspecting agencies engaged to perform testing services for roofing system installation.
- D. Coordinate roofing system installation to ensure insulation and other roofing membrane components not permanently exposed are not subjected to precipitation or left uncovered at end of each work day, or if rain imminent:
 - Provide tie-offs at end of each work day to cover exposed roofing membrane sheets and insulation. Complete terminations, base flashing, and provide temporary seals to prevent water from entering completed sections of roofing system. Remove and discard temporary seals before beginning work on adjoining roofing.
- E. Adhered Roofing Membrane Installation:
 - 1. Install roofing membrane over area to receive roofing in accordance with membrane roofing system manufacturer's written instructions.
- F. Around roof penetrations, seal flanges and flashings with flexible flashing.
- G. Coordinate installation of roof drains and sumps and related flashings.

3.04 INSTALLATION - INSULATION

- A. Standard Installation:
 - 1. Coordinate installation of roof system components so insulation and cover board not exposed to precipitation or left exposed at end of each work day.
 - 2. Place insulation boards over roofing membrane; butt edges in close contact; place channel cut face down; bevel insulation to allow snug fit at cant strips; cut neatly around protrusions through roof.
 - Install tapered insulation under area of roofing to conform to slopes indicated.
 - 4. Install insulation boards with long joints in continuous straight line. Stagger joints between rows, abutting edges. Fill gaps exceeding .25 inch with like materials.
 - 5. Install two or more layers with joints of each succeeding layer staggered minimum of 6 inches from joints of previous layer.
- B. Mechanically Fastened Membrane System Installation:
 - 1. Install insulation with fasteners as required by roofing system manufacturer.

3.05 INSTALLATION - COVER BOARDS

- A. Coordinate installing membrane roofing system components so cover board not exposed to precipitation or left exposed at end of each work day.
- B. Comply with membrane roofing system manufacturer's written instructions for installing roof cover boards.

3.06 CLEANING

- A. Remove bituminous markings from finished surfaces.
- B. In areas where finished surfaces soiled by work of this section, including overspray and spillage from adjacent construction, consult manufacturer of surfaces for cleaning advice, proper cleaning agents and procedures, and comply with manufacturer's documented instructions.
- C. Repair or replace defaced or damaged finishes caused by work of this section.

Morrissey Project No.: 25336 EPDM THERMOSET SINGLE-PLY ROOFING 07 53 23 - 5

Lewis Central CSD High School Rooftop Unit Replacement

3.07 PROTECTION

- A. Protect installed roofing and flashings from construction operations.
- B. Where traffic continues over finished roof membrane, protect surfaces using durable materials.
- C. Correct deficiencies or remove roofing system not complying with requirements. Repair substrates and repair or reinstall roofing system to condition free of damage and deterioration at time of Substantial Completion, and according to warranty requirements.

END OF SECTION

Morrissey Project No.: 25336 EPDM THERMOSET SINGLE-PLY ROOFING 07 53 23 - 6

SECTION 09 21 16 GYPSUM BOARD ASSEMBLIES

PART 1 GENERAL

1.01 SECTION INCLUDES

- Metal stud wall framing.
- B. Metal channel ceiling framing.
- C. Gypsum wallboard.
- D. Joint treatment and accessories.

1.02 REFERENCE STANDARDS

- A. AISI S220 North American Standard for Cold-Formed Steel Nonstructural Framing; 2020.
- B. AISI S240 North American Standard for Cold-Formed Steel Structural Framing; 2015, with Errata (2020).
- C. ASTM A641/A641M Standard Specification for Zinc-Coated (Galvanized) Carbon Steel Wire; 2019 (Reapproved 2025).
- D. ASTM A1003/A1003M Standard Specification for Steel Sheet, Carbon, Metallic- and Nonmetallic-Coated for Cold-Formed Framing Members; 2015.
- E. ASTM C1007 Standard Specification for Installation of Load Bearing (Transverse and Axial) Steel Studs and Related Accessories; 2020 (Reapproved 2024).
- F. ASTM C475/C475M Standard Specification for Joint Compound and Joint Tape for Finishing Gypsum Board; 2017 (Reapproved 2022).
- G. ASTM C514 Standard Specification for Nails for the Application of Gypsum Board; 2004 (Reapproved 2020).
- H. ASTM C645 Standard Specification for Nonstructural Steel Framing Members; 2024.
- I. ASTM C754 Standard Specification for Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products; 2020.
- J. ASTM C840 Standard Specification for Application and Finishing of Gypsum Board; 2024.
- K. ASTM C954 Standard Specification for Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness; 2022.
- L. ASTM C1002 Standard Specification for Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs; 2022.
- M. ASTM C1047 Standard Specification for Accessories for Gypsum Wallboard and Gypsum Veneer Base: 2019.
- N. ASTM C1278/C1278M Standard Specification for Fiber-Reinforced Gypsum Panel; 2024.
- O. ASTM C1396/C1396M Standard Specification for Gypsum Board; 2024.
- P. ASTM C1658/C1658M Standard Specification for Glass Mat Gypsum Panels; 2019 (Reapproved 2024).
- Q. ASTM D3273 Standard Test Method for Resistance to Growth of Mold on the Surface of Interior Coatings in an Environmental Chamber; 2021.
- R. GA-216 Application and Finishing of Gypsum Panel Products; 2024.
- S. SSMA Steel Stud Manufacturers Association; Current Edition.

1.03 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements for submittal procedures.
- B. Product Data:

Morrissey Project No.: 25336 GYPSUM BOARD ASSEMBLIES 09 21 16 - 1

- 1. Provide data on metal framing, gypsum board, glass mat faced gypsum board, accessories, and joint finishing system.
- 2. Provide manufacturer's data on partition head to structure connectors, showing compliance with requirements.

1.04 QUALITY ASSURANCE

- A. Allowable Tolerances: On faces of work exposed in occupied spaces, including stairwells (if any), limit offsets between planes of board faces to 1/8-inch, and limit variations from plumb and location (including warp and bow) not to exceed 1/4-inch in 8'-0".
- B. Install gypsum board on walls, partitions and furring to within 1/8-inch of floor to provide full backing for resilient base.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. Delivery: Gypsum wallboard shall not be delivered to the project site until immediately before application is to begin. All gypsum drywall materials shall be delivered in original packages, containers or bundles bearing brand name and identification nomenclature.
- B. Storage: Gypsum wallboard boards shall be stored inside under cover and stacked flat in a manner to keep material flat, dry, protected from weather, direct sunlight, surface contamination, traffic or other construction damage. Other materials and accessories shall remain in their original wrappings or containers, sorted flat and protected from damage or bending until ready for actual use.
- C. Handling: Handle gypsum boards in a manner to prevent damage to edges, ends and surfaces. Damaged gypsum boards and accessories shall not be incorporated within the work and shall be immediately removed from the site.
- D. Store metal products to prevent corrosion in accordance with AISI "Code of Standard Practice".

1.06 JOB CONDITIONS

- A. Environmental Requirements, General: Comply with requirements of referenced gypsum board application standards and recommendations of gypsum board manufacturer, for environmental conditions before, during, and after application of gypsum board.
- B. Temperature: When outside temperatures are below 55F, maintain continuous interior temperature in the range of 55F to 70F for minimum period of 48 hours prior to, during, and following application of gypsum board, joint and finishing treatment materials or bonding of adhesives.
- C. Ventilation: Ventilate building spaces as required to remove water in excess of that required for drying of joint treatment material immediately after its application. Avoid drafts during dry, hot weather to prevent drying too rapidly.
- D. Protection: Protect all adjacent surfaces and work by suitable means from splatter or overspray from texture surface application.

PART 2 PRODUCTS

2.01 GYPSUM BOARD ASSEMBLIES

- A. Provide completed assemblies complying with ASTM C840 and GA-216.
 - See PART 3 for finishing requirements.

2.02 METAL FRAMING MATERIALS

- A. Steel Sheet: ASTM A1003/A1003M, subject to the ductility limitations indicated in AISI S220 or equivalent.
- B. Manufacturers Metal Framing, Connectors, and Accessories:
 - 1. ClarkDietrich: www.clarkdietrich.com/#sle.
 - 2. MBA Building Supplies, Inc.: www.mbastuds.com.
 - 3. MarinoWARE: www.marinoware.com/#sle.
 - 4. Phillips Manufacturing Co: www.phillipsmfg.com/#sle.

Morrissey Project No.: 25336 GYPSUM BOARD ASSEMBLIES 09 21 16 - 2

- C. Nonstructural Framing System Components: AISI S220; galvanized sheet steel, of size and properties necessary to comply with ASTM C754 for the spacing indicated, with maximum deflection of wall framing of L/120 at 5 psf.
 - 1. Framing and Suspension Materials: When 20-gauge and 25-gauge materials are specified below, they shall be fabricated from commercial quality galvanized steel with a minimum yield point of 33,000 psi. 20-gauge material shall have a design thickness of .0312-inch and the 25-gauge material shall have a design thickness of .0188-inch as defined by SSMA (Steel Stud Manufacturers Association).
 - 2. Studs: C-shaped with flat or formed webs consisting of 25-gauge and 20-gauge galvanized steel, 1-5/8 inch, 3-5/8 inch, 4 inch, and 6 inch screw type studs and track or as otherwise may be indicated on the Drawings.
 - Runners: 20-gauge galvanized U shaped, sized to match studs with 1-1/2-inch minimum legs placed at the top of all walls abutting structural members above as indicated on the Drawings.
 - 4. Ceiling Channels: C-shaped.
 - 5. Furring Members: Hat-shaped sections, minimum depth of 7/8 inch fabricated from 0.021-inch hot dipped galvanized steel.
 - 6. Furring Members: Zee-shaped sections, minimum depth of 2 inches.
- D. Non-structural Framing Accessories:
 - Ceiling Hangers: Type and size as specified in ASTM C754 for spacing required.
- E. Grid Suspension Systems: Steel grid system of main tees and support bars connected to structure using hanging wire.

2.03 SUSPENSION SYSTEM

- A. Grid Suspension System: ASTM C645, manufacturer's standard grid suspension system composed of main beams and cross furring members which interlock to form a modular supporting network.
- B. Wire for Hangers and Ties: ASTM A641/A641M, soft, Class 1 zinc coated (galvanized).
 - 1. Hanger Wire: No. 11 gauge galvanized wire.
 - 2. Tie Wire: No. 16 gauge galvanized wire.
- C. Runner Channels: 20 gauge galvanized channels. Size shall be 1-1/2-inches deep by 19/32-inch wide. Also, provide 25-gauge studs for ceiling/bulkhead suspension where shown on the Drawings.
- D. Furring Channels: 25 gauge electrogalvanized steel.
 - 1. Products:
 - a. Same manufacturers as other framing materials.
- E. Furring Channel Clips: For clipping to furring channels shall be of galvanized wire and of the same manufacturer as the furring channels.
- F. At the Contractor's Option: In lieu of the above specified tie wire, runner channels, furring channels and furring channel clips, provide pre-engineered suspension system including main tees and cross channels manufactured by United States Gypsum Company, or equal system by any other manufacturer listed above, or Drywall Grid System or Shortspan Drywall Grid (as appropriate to the location as manufactured by Armstrong).

2.04 BOARD MATERIALS

- A. Manufacturers Gypsum-Based Board:
 - 1. American Gypsum Company: www.americangypsum.com/#sle.
 - CertainTeed Corporation: www.certainteed.com/#sle.
 - 3. Georgia-Pacific Gypsum: www.gpgypsum.com/#sle.
 - 4. Gold Bond Building Products, LLC provided by National Gypsum Company: www.goldbondbuilding.com/#sle.
 - 5. USG Corporation: www.usg.com/#sle.

- B. Gypsum Wallboard: Paper-faced gypsum panels as defined in ASTM C1396/C1396M; sizes to minimize joints in place: ends square cut.
 - 1. Application: Use for vertical surfaces and ceilings, unless otherwise indicated.
 - 2. Glass mat faced gypsum panels, as defined in ASTM C1658/C1658M, suitable for paint finish, of the same core type and thickness may be substituted for paper-faced board.
 - 3. Unfaced fiber-reinforced gypsum panels as defined in ASTM C1278/C1278M, suitable for paint finish, of the same core type and thickness may be substituted for paper-faced board.
 - 4. Mold Resistance: Score of 10, when tested in accordance with ASTM D3273.
 - Thickness:
 - a. Vertical Surfaces: 5/8 inch.
 - b. Ceilings: 5/8 inch.
 - 6. Paper-Faced Products:
 - a. CertainTeed Corporation; Type X Drywall: www.certainteed.com/#sle.
 - b. USG Corporation; Sheetrock Brand Firecode X Panels 5/8 in. (15.9 mm): www.usg.com/#sle.
 - c. Substitutions: See Section 01 60 00 Product Requirements.
 - 7. Mold-Resistant, Paper-Faced Products:
 - a. Gold Bond Building Products, LLC provided by National Gypsum Company; Gold Bond XP Gypsum Board: www.goldbondbuilding.com/#sle.
 - Glass Mat Faced Products:
 - a. USG Corporation; Sheetrock Brand Glass-Mat Panels Mold Tough Regular 5/8 in. (15.9 mm): www.usg.com/#sle.
 - b. Substitutions: See Section 01 60 00 Product Requirements.

2.05 GYPSUM BOARD ACCESSORIES

- A. Beads, Joint Accessories, and Other Trim: ASTM C1047, rigid plastic, galvanized steel, or rolled zinc, unless noted otherwise.
 - Expansion Joints:
 - a. Type: 1/4-inch by 7/16-inch deep V-shaped metal with factory-installed protective tape.
 - b. Products:

Morrissey Project No.: 25336

- 1) ClarkDietrick; 093 Zinc Control Joint (ZNCJ): www.clarkdietrich.com.
- Phillips Manufacturing Co; 093 Expansion Control Joint: www.phillipsmfg.com/#sle.
- 3) USG Corporation: www.usg.com.
- B. Joint Materials: ASTM C475/C475M and as recommended by gypsum board manufacturer for project conditions.
 - Paper Tape: 2 inch wide, creased paper tape for joints and corners, except as otherwise indicated.
- C. Screws for Fastening of Gypsum Panel Products to Cold-Formed Steel Studs Less than 0.033 inches in Thickness and Wood Members: ASTM C1002; self-piercing tapping screws, corrosion-resistant.
- D. Screws for Fastening of Gypsum Panel Products to Steel Members from 0.033 to 0.112 inch in Thickness: ASTM C954; steel drill screws, corrosion-resistant.
- E. Screws shall be 1-inch, Type S, drywall screws for securing gypsum board to metal studs and 1-1/4-inch, Type W drywall screws for securing gypsum board to wood furring. Longer screws, as recommended by the gypsum board manufacturer, shall be utilized to secure the exposed layer of gypsum board to the framing and suspension systems through the concealed layer at double layer walls, ceilings and bulkheads, and to attach and secure accessories. Provide other screws as recommended by the manufacturer for attachment of tile backer board to metal studs.
- F. Nails for Attachment to Wood Members: ASTM C514.

G. Adhesive for direct lamination of gypsum board panels at double layer walls, ceilings and bulkheads, and direct lamination of gypsum board to other substrates shall be selected as recommended by the gypsum board manufacturer for the specific applications and as approved by the Architect/Engineer.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that project conditions are appropriate for work of this section to commence.

3.02 FRAMING INSTALLATION

- A. Metal Framing: Install in accordance with ASTM C1007AISI S220 and manufacturer's instructions.
- Suspended Ceilings and Soffits: Space framing and furring members as indicated below.
 - 1. Level ceiling system to a tolerance of 1/1200.
 - 2. Laterally brace entire suspension system.
 - Hanger wires shall be spaced at 4-foot centers along runner channels, or closer spacing if recommended by the materials manufacturer, and shall be located 6-inches from ends.
 Adjust to a closer spacing if required to provide secure anchorage for double layer ceilings.
 - 4. Runner channels shall be spaced at 4-foot centers, and shall be within 6-inches of parallel walls or ceiling boundaries. Lap runner channels 12-inches and tie near each end with double loops of tie wire. Substitute 25 gauge studs where shown on the Drawings. Studs used for ceiling suspension system shall be spaced at 16-inches on center unless noted otherwise.
 - 5. Furring channels shall be placed at right angles to runner channels and spaced at 16-inch centers. Fasten to runner channel with clips on alternate sides of runner channels. Lap furring channels 6-inches at splices and tie near ends with double loops of tie wire.
 - 6. Under the contractor's option as previously described, in lieu of the runner channels and furring channels specified above, install hanger wires, main tees and cross channels as recommended by the materials manufacturer.
- C. Studs: Space studs at 16 inches on center.
 - Align track at floor, top of masonry walls, frames and overhead structure as indicated on the Drawings. Secure base track at 24-inch centers and at ends with power-driven fasteners as specified above. Head track to be held within the down turn legs of special formed 20-gauged galvanized steel slip runner track welded or secured to bottom side of structure above for lateral support with deflection allowance of 1/2-inch or as indicated on the Drawings. Bulkhead or other similar construction which is to be hung under tension shall have head track secured to structure at 16-inch centers minimum. Butt weld or splice track at joints.
 - 2. Set studs at partition ends, corners, and intersections, at jambs of openings and at 16-inch centers in between unless shown otherwise on Drawings. Seat studs squarely into track and plumb or align. Secure studs to track as required.
 - 3. If the partition is of such height that the studs must be spliced, do so by installing 2 horizontal runner channels back-to-back (one for the top of the lower wall and one for the bottom of the upper wall). Fasten the runner channels to each other and then install 3-5/8-inch metal stud diagonal knee braces at 8-feet maximum centers from on face of the studs to the structure.
 - 4. Install horizontal stiffener channels through studs at cut-out locations at maximum 6-foot centers in partitions which do not have GWB installed in both faces.
 - 5. Install knee braces for metal frames and for walls which terminate above the ceiling as required to provide lateral support.

3.03 BOARD INSTALLATION

A. Comply with ASTM C840, GA-216, and manufacturer's instructions. Install to minimize butt end joints, especially in highly visible locations.

Morrissey Project No.: 25336 GYPSUM BOARD ASSEMBLIES 09 21 16 - 5

- B. Single-Layer Nonrated: Install gypsum board of maximum practical length with long dimensions at right angles to furring, cross channels, and studs, with ends and edges occurring over firm bearing.
- C. Installation on Metal Framing: Use screws for attachment of gypsum board except face layer of nonrated double-layer assemblies, which may be installed by means of adhesive lamination.
- D. Openings: End joints may occur not closer than 8-inches form either side of openings in walls. No joint shall align with edges of openings, and joints above openings shall be centered over openings.
- E. Fastenings: Panels shall be held in firm contact with the support member while the nails and screws are being driven. Fastenings shall proceed from the central portion of the board toward ends and edges. Fastenings shall proceed from the central portion of the board toward ends and edges. Fastenings shall be driven home with the heads slightly below the surface of the board. Care shall be taken to avoid breaking the paper face. Improperly driven fastenings shall be removed. Space screws at 15-inch centers and locate 3/8-inch to 1/2-inch from edges of panels. At double layer walls and bulkheads, install finish layer with longer screws and adhesive as noted above for ceilings.
- F. Checking Fasteners: After installation, pound on walls and ceilings to detect loose fastenings and push on board adjacent to fasteners to see if there is movement. If loose fasteners are detected, drive them tight. Whenever fastenings have punctured paper, hold board tight against framing and install another fastener properly, approximately 1-1/2-inches from fastener head which punctured paper, and remove faulty fastener. When fastenings wallboard to second side of a partition, check the opposite side for fasteners loosened by pounding and drive them tight again.

3.04 INSTALLATION OF TRIM AND ACCESSORIES

- A. Control Joints: Place control joints consistent with lines of building spaces and as indicated.
 - 1. Not more than 30 feet apart on walls and ceilings over 50 feet long and in continuous lengths with fasteners spaced at 6-inch centers.
- B. Corner Beads: Install at external corners, using longest practical lengths.

3.05 JOINT TREATMENT

- A. Glass Mat Faced Gypsum Board: Use fiberglass joint tape, embed and finish with setting type joint compound.
- B. Paper Faced Gypsum Board: Use paper joint tape, embed with drying type joint compound and finish with drying type joint compound.
- C. Finish gypsum board in accordance with levels defined in ASTM C840, as follows:
 - 1. Level 5: Walls and ceilings to receive semi-gloss or gloss paint finish and other areas specifically indicated in the Drawings.
 - 2. Level 4: Walls and ceilings to receive eggshell paint finish, flat paint finish, or wall coverings, unless otherwise indicated.
 - 3. Level 3: Walls to receive textured wall finish.
 - 4. Level 2: In utility areas, behind cabinetry, and on backing board to receive tile finish.
 - 5. Level 1: Ceiling plenum areas above finished ceilings, whether or not accessible in the completed construction.
- D. Tape, fill, and sand exposed joints, edges, and corners to produce smooth surface ready to receive finishes.
 - 1. Taping: A uniformly thin layer of joint compound, approximately 4-inches wide, shall be applied over the joint. Tape shall be centered over the joint and embedded into the compound, leaving sufficient joint compound under the tape to provide proper bond. Wall angles, corners, returns and inside corner angles shall be reinforced with tape to conform to the angle and embedded into the compound. Taping and finishing shall be required for all below ceiling line exposed joints, and all joints behind tackwall surfaces. Taping only

- without finishing will be required for all fire rated partitions above the ceiling line, and for all appsum board which covers steel structure members at return air plenum.
- 2. Joint compound combinations to be utilized at gypsum board locations shall be as follows (note: use portland based product at cement board locations):
 - Embedding and First Coat: Ready-mixed or job-mixed, drying-type, all-purpose or taping compound.
 - b. Fill (Second) Coat: Ready-mixed or job-mixed, drying-type, all-purpose or topping compound.
 - c. Finish (Third) Coat: Ready-mixed or job-mixed, drying-type, all-purpose or topping compound.
- 3. Finishing Corners: All inside corners shall be coated with at least one coat of joint compound or topping compound with the edges feathered out. Flanges of wallboard corner bead shall be concealed by at least 2 coats of compound. The first coat shall be joint compound, and the second coat may be joint compound or topping compound feathered out approximately 9-inches on both sides of the exposed metal nose.
- 4. Finish Nail or Screw Heads and Dimples: Apply three coats of joint compound or taping compound to all exposed gypsum board surfaces below the ceiling, and concealed behind tackwall locations. This may be applied as each coat is applied to the joints. Allow 24 hours drying time between coats, sanding between if necessary. Caution shall be used to avoid roughing of wallboard paper.
- E. Where Level 5 finish is indicated, spray apply high build drywall surfacer over entire surface after joints have been properly treated; achieve a flat and tool mark-free finish.

3.06 TOLERANCES

A. Maximum Variation of Finished Gypsum Board Surface from True Flatness: 1/8 inch in 10 feet in any direction.

3.07 PROTECTION

A. Protect installed gypsum board assemblies from subsequent construction operations.

END OF SECTION

Morrissey Project No.: 25336 GYPSUM BOARD ASSEMBLIES 09 21 16 - 7

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Suspended metal grid ceiling system.
- B. Acoustical units.

1.02 REFERENCE STANDARDS

- A. ASTM C635/C635M Standard Specification for Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings; 2022.
- B. ASTM C636/C636M Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-In Panels; 2019 (Reapproved 2025).
- C. ASTM E1264 Standard Classification for Acoustical Ceiling Products; 2023.

1.03 ADMINISTRATIVE REQUIREMENTS

- A. Sequence work to ensure acoustical ceilings are not installed until building is enclosed, sufficient heat is provided, dust generating activities have terminated, and overhead work is completed, tested, and approved.
- B. Do not install acoustical units until after interior wet work is dry.

1.04 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements for submittal procedures.
- B. Product Data: Provide data on acoustical units.
- C. Samples: Submit two samples 6 x 6 inch in size illustrating material and finish of acoustical units.
- D. Manufacturer's Installation Instructions: Indicate special procedures and perimeter conditions requiring special attention.
- E. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 01 60 00 Product Requirements, for additional provisions.
 - 2. Extra Acoustical Units: Provide one additional unopened carton of each type and size of acoustical tiles on the project.

1.05 QUALITY ASSURANCE

- A. Subcontract the installation of acoustical ceilings to an experienced firm which is acceptable to the manufacturer of the acoustical units and suspension system.
- B. Warranty: Provide manufacturer's minimum 15 year system warranty for all acoustical ceiling tile and grid against sagging, shrinking and delamination, and resistance to the growth of mold / mildew and bacteria.

1.06 DELIVERY, STORAGE AND HANDLING]

A. Material shall be delivered to the project in the original packages, with seals unbroken and with the manufacturer's name and brand stamped clearly theron. No seconds or remnants shall be used. No materials shall be delivered or stored in the building until all glazing has been completed and all exterior openings closed in. All wet work, including concrete, masonry, plastering, etc., shall be completed and dried out.

1.07 FIELD CONDITIONS

A. Maintain uniform temperature of minimum 60 degrees F, and maximum humidity of 40 percent prior to, during, and after acoustical unit installation, or as required in Manufacturer's Installation Instructions.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Acoustic Tiles/Panels:
 - Certainteed Architectural: www.certainteed.com/ceilings-and-walls/#sle.
- B. Suspension Systems:
 - 1. Armstrong World Industries, Inc: www.armstrongceilings.com/#sle.
 - 2. Certainteed Architectural: www.certainteed.com/ceilings-and-walls/#sle.
 - 3. USG Corporation: www.usg.com/ceilings/#sle.
 - Chicago Metallic Corp.

2.02 PERFORMANCE REQUIREMENTS

A. Surface Burning Characteristics: Class A in accordance with ASTM E84.

2.03 ACOUSTICAL UNITS

- A. Acoustical Units General: ASTM E1264, Class A.
- B. Acoustical Tiles, Type ATC-1: Painted mineral fiber, ASTM E1264 Type III, with the following characteristics:
 - 1. Applications: Ceilings as indicted on the Drawings.
 - Classification: ASTM E1264 Type A.
 - a. Form: A1.2, wet formed.
 - b. Pattern: C, D fissured.
 - 3. Size: 24 by 24 inches.
 - 4. Thickness: 5/8 inch.
 - 5. Composition: Wet Formed Mineral Fiber.
 - 6. Light Reflectance: 83 percent, in accordance with ASTM E1264.
 - 7. Noise Reduction Coefficient (NRC) Range: 0.55, in accordance with ASTM E1264.
 - 8. Ceiling Attenuation Class (CAC): 35, in accordance with ASTM E1264.
 - 9. Tile Edge: Angled tegular.
 - 10. Color: White.
 - 11. Suspension System: Existing exposed grid.
 - 12. Basis of Design Product:
 - a. Certainteed Architectural; Baroque PBT-154 (Verify to match existing ATC): www.certainteed.com/ceilings-and-walls/#sle.

2.04 SUSPENSION SYSTEMS

- A. Metal Suspension Systems General: Complying with ASTM C635/C635M; die cut and interlocking components, with perimeter moldings, hold-down clips, stabilizer bars, clips, and splices as required. Sections shall be thickness and strength to support the ceiling assembly indicated on the Drawings, with a maximum deflection of 1/360 of the span. Size attachment devices for 5 times the design load indicated in ASTM C635/C635M, Table 1, direct hung.
 - 1. Materials:
 - a. Steel Grid: ASTM A653/A653M, G30 coating, unless otherwise indicated.
 - b. Aluminum Grid: Aluminum sheet, ASTM B209/B209M.
 - c. Stainless Steel Grid: ASTM A666/A666M, Type 304.
- B. Exposed Suspension System: Formed galvanized steel, commercial quality cold rolled; intermediate-duty, minimum.
 - 1. Applications: Seismic.
 - Structural Classification: Intermediate-duty, when tested in accordance with ASTM C635/C635M.
 - 3. Profile: Tee; 15/16 inch face width.
 - 4. Construction: Double web.
 - 5. Finish: Baked enamel.
 - 6. Color: White.

7. Products:

- a. Armstrong World Industries, Inc; Prelude XL: www.armstrongceilings.com/#sle.
- b. Certainteed Architectural; 15/16" EZ Stab Classic System: www.certainteed.com/ceilings-and-walls/#sle.
- USG Corporation; Donn Brand DXL 15/16 inch Acoustical Suspension System: www.usg.com/#sle.
- d. Rockfon; Chicago Metallic 1200 15/16": www.rockfon.com/#sle.

2.05 ACCESSORIES

- A. Support Channels and Hangers: Galvanized steel; size and type to suit application, seismic requirements, and ceiling system flatness requirement specified.
- B. Hanger Wire: 12 gauge, 0.08 inch galvanized steel wire. Unless heavier gauge is recommended by the manufacturer for the loads specified.
- C. Hold-Down Clips: Manufacturer's standard clips to suit application.
- D. Touch-up Paint: Type and color to match acoustical and grid units.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify existing conditions before starting work. Notify the Contractor and the Architect in writing of unsatisfactory conditions. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to installer.
- B. Verify that layout of hangers will not interfere with the location of the electrial fixtures, and other items which penetrate the ceiling. Examine the Electrical and Mechanical Drawings to coordinate this work. Examine the Reflected Ceiling Plan and various ceiling edge treatment details on the Drawings for exact coordination of relationships to the various building lines, surfaces and conditions.

3.02 PREPARATION

- A. Install after major above-ceiling work is complete.
- B. Coordinate the location of hangers with other work.

3.03 INSTALLATION - SUSPENSION SYSTEM

- A. Install suspension system in accordance with ASTM C636/C636M, ASTM E580/E580M, and manufacturer's instructions, as supplemented in this section.
- Rigidly secure system, including integral mechanical and electrical components, for maximum deflection of 1:360.
- C. Locate system on room axis according to reflected plan.
- D. Perimeter Molding: Install at intersection of ceiling and vertical surfaces and at junctions with other interruptions.
 - 1. Use longest practical lengths.
- E. Suspension System, Non-Seismic: Hang suspension system independent of walls, columns, ducts, pipes and conduit. Where carrying members are spliced, avoid visible displacement of face plane of adjacent members.
- F. Install suspension system with hanger support coming from building structure only. Install hangers by looping and wire-tying directly to structures or with concrete nails or drive pins into solid structure members, toggles into hollow areas, or eye screws as appropriate to comply with ASTM C636/C636M. Attachment to ducts, conduit and other similar support will not be permitted. Space hangers not more than 4-feet on center as recommended by grid manufacturer along each member. Extra hanger wires shall be required as recommended by the grid manufacturer where grilles and troffers are installed parallel to main runners.
- G. Where ducts or other equipment prevent the regular spacing of hangers, reinforce the nearest affected hangers and related carrying channels to span the extra distance.

Lewis Central CSD High School Rooftop Unit Replacement

- H. Do not support components on main runners or cross runners if weight causes total dead load to exceed deflection capability.
- Support fixture loads using supplementary hangers located within 6 inches of each corner, or support components independently.
- J. Do not eccentrically load system or induce rotation of runners.

3.04 INSTALLATION - ACOUSTICAL UNITS

- A. Install acoustical units in accordance with manufacturer's instructions.
- B. Fit acoustical units in place, free from damaged edges or other defects detrimental to appearance and function.
- C. Fit border trim neatly against abutting surfaces.
- D. Install units after above-ceiling work is complete.
- E. Install acoustical units level, in uniform plane, and free from twist, warp, and dents.
- F. Cutting Acoustical Units:
 - Cut to fit irregular grid and perimeter edge trim.
 - 2. Make field cut edges of same profile as factory edges.
- G. Where round obstructions occur, provide preformed closures to match perimeter molding.
- H. Install hold-down clips on each panel to retain panels tight to grid system; comply with fire rating requirements.
- I. Install hold-down clips on panels within 20 ft of an exterior door.
- J. Install hold-down clips on each panel where noted on the Drawings and in areas where required by governing regulationd for fire-resistance ratings. Space as recommended by the panel manufacturer, unless otherwise indicated or required. Comply with fire rating requirements.
- K. Upon completion of the installation, all soiled, deformed, discolored and otherwise damaged tile surfaces shall be cleaned or replaced. Completed acoustical ceiling system installation shall neither be altered nor disturbed by any other trade without specific prior approval from the Prime Contractor and Ceiling Subcontractor. Prior to Substantial Completion, the total acoustical ceiling system installation shall be inspected by the Contractor, adjusting all units and accessories for complete and proper placement and alignment. All soiled and otherwise damaged acoustic tile units and accessories shall be replaced with new items if minor finish damage cannot be successfully cleaned or repaired to original condition status completely free of damage or soil evidence to the satisfaction of the Architect/Engineer.

3.05 CLEANING

- A. Clean surfaces.
- B. Replace damaged or abraded components.

END OF SECTION

SECTION 09 91 23 INTERIOR PAINTING

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Surface preparation.
- B. Field application of paints.
- C. Scope: Finish interior surfaces exposed to view, unless fully factory-finished and unless otherwise indicated.
 - Mechanical and Electrical:
 - a. In finished areas, paint insulated and exposed pipes, conduit, boxes, insulated and exposed ducts, hangers, brackets, collars and supports, mechanical equipment, electrical equipment, panel fronts exposed in a finished room, and new registers and grilles, unless otherwise indicated. Color shall match color of adjacent wall or ceiling; coordinate with Architect.
 - b. Paint interior surfaces of air ducts and plenum spaces that are visible through grilles and louvers with one coat of flat black paint to visible surfaces.

D. Do Not Paint or Finish the Following Items:

- 1. Items factory-finished unless otherwise indicated; materials and products having factory-applied primers are not considered factory finished.
- 2. Items indicated to receive other finishes.
- Items indicated to remain unfinished.
- 4. Fire rating labels, equipment serial number and capacity labels, bar code labels, and operating parts of equipment.
- 5. Stainless steel, anodized aluminum, bronze, terne-coated stainless steel, and lead items.
- 6. Marble, granite, slate, and other natural stones.
- 7. Floors, unless specifically indicated.
- 8. Ceramic and other tiles.
- 9. Brick, architectural concrete, cast stone, integrally colored plaster, and stucco.
- 10. Glass.
- 11. Acoustical materials, unless specifically indicated.
- 12. Concealed pipes, ducts, and conduits.
- 13. Telecommunications cables: coordinate paint and cable installation schedule with the telecommunications contractor. Protect cabling from direct painting or over-spray. Cables which have been painted are void of the manufacturer's warranty and will be replaced at this contractor's expense.

1.02 DEFINITIONS

A. Comply with ASTM D16 for interpretation of terms used in this section.

1.03 REFERENCE STANDARDS

- ASTM D16 Standard Terminology for Paint, Related Coatings, Materials, and Applications; 2024.
- B. SSPC-SP 3 Power Tool Cleaning; 2024.

1.04 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements for submittal procedures.
- B. Product Data: Provide complete list of products to be used, with the following information for each:
 - 1. Manufacturer's name, product name and/or catalog number, and general product category (e.g., "alkyd ename!").
 - 2. Cross-reference to specified paint system products to be used in project; include description of each system.

Morrissey Project No.: 25336 INTERIOR PAINTING 09 91 23 - 1

- C. Samples: Submit three paper "draw down" samples, 8-1/2 by 11 inches in size, illustrating range of colors available for each finishing product specified.
 - 1. Where sheen is specified, submit samples in only that sheen.
- D. Manufacturer's Instructions: Indicate special surface preparation procedures.
- E. Maintenance Data: Submit data including care and cleaning instructions, touch-up procedures, and repair of painted and finished surfaces.
- F. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 01 60 00 Product Requirements, for additional provisions.
 - Extra Paint and Finish Materials: 1 gal of each color; from the same product run, store where directed.
 - 3. Label each container with color in addition to the manufacturer's label.

1.05 QUALITY ASSURANCE

- A. Applicator Qualifications: Company specializing in performing the type of work specified with minimum 3 years experience and approved by manufacturer.
- B. Pre-Painting Conference: Prior to the start of painting and after approval of required shop drawings and samples, the General Contractor shall arrange a Pre-painting Conference at the project site at a pre-arranged time approved by the Architect/Engineer. The conference shall include in attendance the painting subcontractor and his/her jobsite foreperson. The contractor shall record discussions and agreements that are made which are not specifically addressed in the Contract Documents, and shall furnish a copy to all involved participants.

1.06 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to site in sealed and labeled containers; inspect to verify acceptability.
- B. Container Label: Include manufacturer's name, type of paint, brand name, lot number, brand code, coverage, surface preparation, drying time, cleanup requirements, color designation, and instructions for mixing and reducing.
- C. Paint Materials: Store at minimum ambient temperature of 45 degrees F and a maximum of 90 degrees F, in ventilated area, and as required by manufacturer's instructions.

1.07 FIELD CONDITIONS

- A. Do not apply materials when surface and ambient temperatures are outside the temperature ranges required by the paint product manufacturer.
- B. Follow manufacturer's recommended procedures for producing best results, including testing of substrates, moisture in substrates, and humidity and temperature limitations.
- C. Do not apply materials when relative humidity exceeds 85 percent, at temperatures less than 5 degrees F above the dew point, or to damp or wet surfaces.
- D. Minimum Application Temperatures for Paints: 50 degrees F for interiors unless required otherwise by manufacturer's instructions.
- E. Provide lighting level of 80 fc measured mid-height at substrate surface.
- F. Sequencing: Frames and doors shall be given their first coat of paint and stain/varnish before glass is installed.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Provide paints and finishes used in any individual system from the same manufacturer; no exceptions.
- B. Paints:
 - 1. Base Manufacturer: Sherwin-Williams.
 - 2. Behr Paint Company: www.behr.com/#sle.
 - 3. Benjamin Moore: www.benjaminmoore.com/#sle.

Morrissey Project No.: 25336 INTERIOR PAINTING 09 91 23 - 2

Lewis Central CSD High School Rooftop Unit Replacement

- 4. Diamond Vogel Paints: www.diamondvogel.com/#sle.
- 5. Pittsburgh Paints: www.pittsburghpaintsco.com/#sle.
- 6. Sherwin-Williams Company: www.sherwin-williams.com/#sle.
- 7. Tnemec: www.tnemec.com/#sle.
- C. Primer Sealers: Same manufacturer as top coats.
- D. Substitutions: See Section 01 60 00 Product Requirements.

2.02 PAINTS AND FINISHES - GENERAL

- A. Paints and Finishes: Ready-mixed, unless intended to be a field-catalyzed paint.
 - 1. Provide paints and finishes of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing properties, and capable of drying or curing free of streaks or sags.
 - 2. Supply each paint material in quantity required to complete entire project's work from a single production run.
 - 3. Do not reduce, thin, or dilute paint or finishes or add materials unless such procedure is specifically described in manufacturer's product instructions.
- B. Flammability: Comply with applicable code for surface burning characteristics.

2.03 PAINT SYSTEMS - INTERIOR

- A. Exposed Structural Steel and Deck, 1 Coat:
 - 1. Flat: One finish coat.
 - a. Product:
 - 1) Sherwin Williams, Pro Industrial Waterborne Acrylic Dryfall.
 - 2) Pittsburgh Paints, Speedhide Super Tech Interior Acrylic Dry-Fog.
 - 3) Tnemec, Series 115 Uni-Bond DF (Dryfall).
- B. Gypsum Board (Ceilings), 3 Coats:
 - 1. One coat of primer.
 - a. Products:
 - 1) Sherwin Williams, ProMar 200 Zero VOC Interior Latex Primer.
 - 2) Pittsburgh Paints, Speedhide Pro-EV Zero VOC Interior Latex Primer.
 - 2. Flat: Two finish coats.
 - a. Products:
 - 1) Sherwin Williams, ProMar 200 Zero VOC Interior Latex.
 - 2) Pittsburgh Paints, Speedhide Pro-EV Zero VOC Interior Latex.
- C. <u>Existing Gypsum Board, Plaster, Concrete, and Concrete Masonry</u> (Previously painted), 2 Coats:
 - 1. Eg-Shel: Two finish coats.
 - a. Products:
 - 1) Sherwin Williams, ProMar 200 Zero VOC Interior Latex.
 - 2) Pittsburgh Paints, Speedhide Zero VOC Interior Latex.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Do not begin application of paints and finishes until substrates have been adequately prepared.
- B. Verify that surfaces are ready to receive work as instructed by the product manufacturer.
- C. Examine surfaces scheduled to be finished prior to commencement of work. Report any condition that may potentially affect proper application.
- D. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.
- E. Test shop-applied primer for compatibility with subsequent cover materials.

Morrissey Project No.: 25336 INTERIOR PAINTING 09 91 23 - 3

- F. Measure moisture content of surfaces using an electronic moisture meter. Do not apply finishes unless moisture content of surfaces is below the following maximums:
 - 1. Gypsum Wallboard: 12 percent.
 - 2. Plaster and Stucco: 12 percent.

3.02 PREPARATION

- A. Clean surfaces thoroughly and correct defects prior to application.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- C. Remove or repair existing paints or finishes that exhibit surface defects.
- D. Remove or mask surface appurtenances, including electrical plates, hardware, light fixture trim, escutcheons, and fittings, prior to preparing surfaces or finishing.
- E. Seal surfaces that might cause bleed through or staining of topcoat.
- F. Remove mildew from impervious surfaces by scrubbing with solution of tetra-sodium phosphate and bleach. Rinse with clean water and allow surface to dry.
- G. After application of first coat, putty nail holes, cracks, etc., with putty of a color to match that of the finish. Bring putty flush to the adjoining surface. Sandpaper smooth when dried.
- H. Gypsum Board: Fill minor defects with filler compound. Spot prime defects after repair.
- I. <u>Plaster:</u> Fill hairline cracks, small holes, and imperfections with latex patching plaster. Make smooth and flush with adjacent surfaces. Wash and neutralize high-alkali surfaces.

3.03 APPLICATION

- A. Remove unfinished louvers, grilles, covers, and access panels on mechanical and electrical components and paint separately.
- B. Apply products in accordance with manufacturer's written instructions.
- C. Where adjacent sealant is to be painted, do not apply finish coats until sealant is applied.
- D. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.
- E. Apply each coat to uniform appearance in thicknesses specified by manufacturer.
- F. Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.
- G. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

3.04 FIELD QUALITY CONTROL

A. First Coat Inspection: When a coat of material has been applied, the Painting Subcontractor shall inform the Architect/Engineer so that the work may be inspected and approved. Credit for succeeding coats will not be given unless the preceding coat has been so examined and approved.

3.05 CLEANING

- A. Clean surfaces to be painted before applying paint or surface treatments. Remove oil and grease prior to mechanical cleaning. Program cleaning and painting so that contaminants from cleaning process will not fall onto wet, newly-painted surfaces.
- B. Collect waste material that could constitute a fire hazard, place in closed metal containers, and remove daily from site.

3.06 PROTECTION

A. Protect work of other trades whether to be painted or not, against damage by painting and finishing work. Correct any damage by cleaning, repairing or replacing, and repainting, as acceptable to Architect.

Morrissey Project No.: 25336 INTERIOR PAINTING 09 91 23 - 4

Lewis Central CSD High School Rooftop Unit Replacement

- B. Protect adjacent work, building finishes and surfaces of manufactured casework or similar items with masking tape, drop cloths or other suitable coverings. Manufactured casework, millwork, cabinetwork, food service equipment and similar items shall not be utilized for any construction related purpose or utilized as work surface, scaffolding, plank supports or in any way walked upon.
- C. Provide "Wet Paint" signs as required to protect newly-painted finishes. Remove temporary protective wrappings provided by others for protection of their work, after completion of painting operations.
- D. Protect finishes until completion of project.
- E. Touch-up damaged finishes after Substantial Completion.

END OF SECTION

Morrissey Project No.: 25336 INTERIOR PAINTING 09 91 23 - 5

SECTION 019113 - COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including general and supplementary conditions, general mechanical provisions, and applicable mechanical and electrical specifications sections, apply to work of this section.

1.2 DEFINITIONS

- A. Commissioning Plan: Adocument that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.3 COMISSIONING AUTHORITY

A. CxA to be provided by Optimized Systems – IMEG under the Prime Contractor. The CxA has overall responsibility for planning and coordinating the commissioning process.

1.4 CONTRACTOR RESPONSIBILITY

A. This section of the specifications defines the Contractor's responsibilities with respect to the commissioning process. Each Contractor and subcontractor shall review this section and shall include in their bids for carrying out the work described, as it applies to each division and section of these specifications, individually and collectively.

1.5 DESCRIPTION OF WORK

- A. Commissioning is a systematic process of ensuring that all building systems perform interactively according to the design intent and the owner's operational needs. The CxA shall provide the Owner with an unbiased, objective view of the system's installation, operation, and performance. The commissioning process does not take away or reduce the responsibility of the installing contractors to provide a finished product, installed and fully functional in accordance with the Contract Documents.
- B. Commissioning is intended to enhance the quality of system startup and aid in the orderly completion and transfer of systems for beneficial use by the Owner. The CxA shall be the leader of the commissioning team, planning and coordinating all commissioning activities in conjunction with the design professionals, construction manager, subcontractors, manufacturers, and equipment suppliers.
- C. The General Contractor, Mechanical Contractor, Electrical Contractor, Temperature Control Contractor, and all subcontractors shall be responsible for cooperating and coordinating their work with the CxA. They shall also be responsible for carrying out all the physical activities required for installation of

components and systems, and operating them during the commissioning process as required in this section.

D. Commissioning, including functional tests, O&M documentation review, and training is to occur after startup and initial checkout and be completed before Substantial Completion.

1.6 SCOPE OF COMMISSIONING

- A. The following shall be commissioned:
 - 1. HVAC Systems, including but not limited to:
 - a. Rooftop Units
 - b. Rooftop Air Handling Unit
 - e. Building automation system.
 - 2. Other equipment and systems explicitly identified elsewhere in the Contract Documents as requiring commissioning.

1.7 SUBMITTALS

- A. Manufacturers Instructions: Submit copies of all manufacturer-provided instructions that are shipped with the equipment as soon as the equipment is delivered.
- B. Startup plans and reports, including blank Startup and Prefunctional Checklists for approval by CxA.
- C. Submit O&M manuals related to items that are commissioned to CxA for review; make changes recommended by CxA.
- D. Completed Prefunctional Checklists.

1.8 STARTUP, PREFUNCTIONAL CHECKLISTS, AND INITIAL CHECKOUT

- A. General: Prefunctional checklists are important to ensure that the equipment and systems are hooked up and operational. It ensures that functional performance testing may proceed without unnecessary delays. Each piece of equipment receives full prefunctional checkout. No sampling strategies are used. The prefunctional performance testing for a given system shall be successfully completed prior to formal functional performance testing of equipment can begin.
- B. Startup and Initial Checkout Plan: The primary role of the CxA in this process is to ensure there is written documentation that each of the manufacturer-recommended procedures has been completed.
 - 1. Contractor responsible for the purchase of the equipment develops the full startup plan by utilizing the manufacturer's detailed startup and checkout procedures from the O&M Manual and the normally-used field checkout sheets. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - 2. The full startup plan shall consist of something as simple as:
 - a. The manufacturer's prefunctional checklists.

- b. The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end
- 3. Contractor shall submit the full startup plan to the General Contractor for review and scheduling.
- 4. The CxA reviews the procedures and the format for documenting them, noting any procedures that need to be added. Checklists shall be submitted to CxA for approval not less than 8 weeks prior to startup.
- C. Execution of Prefunctional Checklists and Startup: Contractor shall be responsible for filling out Prefunctional Checklists after completion of installation and before startup; witnessing by the CxA is not required unless otherwise specified.
 - 1. Each line item without deficiency is to be witnessed, initialed, and dated by the actual witness; checklists are not complete until all line items are initialed and dated complete with deficiencies.
 - 2. Checklists with incomplete items may be submitted for approval provided the Contractor attests that incomplete items do not preclude the performance of safe and reliable Functional Testing; resubmission of the checklist is required upon completion of remaining items.
 - 3. Individual checklists may contain line items that are the responsibility of more than one installer; Contractor shall assign responsibility to appropriate installers or subcontractors, with identification recorded on the form.
 - 4. If any checklist line item is not relevant, record reasons on the form.
 - 5. Regardless of these reporting requirements, Contractor shall be responsible for correct startup and operation.
 - 6. The Subs and vendors shall execute startup and provide the General Contractor with a signed and dated copy of the completed start-up report within two days of completion. The General Contractor shall submit copies to the CxA for review.
- D. Deficiencies: Correct deficiencies and re-inspect or retest, as applicable, at no extra cost to the Owner.
 - 1. If difficulty in correction would delay progress, report deficiency to the CxA immediately.

1.9 FUNCTIONAL PERFORMANCE TESTS

- A. General: The objective of functional performance testing is to demonstrate that each system is operating according to the documented design intent and Contract Documents. In general, each system will be operated through all modes of operation as described in the Contract Documents (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load) where there is a specified system response. Verifying each step in the sequences of operation is required. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. will also be tested.
- B. A Functional Performance Test is required for each piece of equipment, system, or other assembly specified to be commissioned, unless sampling of multiple identical or near-identical units is allowed by the final test procedures.
- C. Development of Test Procedures: The CxA shall develop specific test procedures and forms to verify and document proper operation of each piece of equipment and system. Prior to execution, the CxA will provide a copy of the test procedures to the Contractor(s) who shall review the tests for feasibility, safety, equipment and warranty protection. The CxA will submit the tests to the A/E for review.
- D. Coordination and Scheduling: The Subs shall provide sufficient notice to the CxA regarding their completion schedule for the prefunctional checklists and startup of all equipment and systems. The CxA

- will schedule functional tests through the GC and affected Subs. The CxA shall direct, witness and document the functional testing of all equipment and systems. The Contractor(s) shall execute the tests.
- E. In general, functional testing is conducted after prefunctional testing and startup has been satisfactorily completed. The control system is sufficiently tested and approved by the CxA before it is used for TAB or to verify performance of other components or systems. The air balancing and water balancing is completed and debugged before functional testing of air-related or water-related equipment or systems.
- F. Contractor shall be responsible for correction of deficiencies and retesting at no extra cost to the Owner; if a deficiency is not corrected and retested immediately, the CxA shall document the deficiency and the Contractor's stated intentions regarding correction.
 - 1. Deficiencies are any condition in the installation or function of a component, piece of equipment, or system that is not in compliance with the Contract Documents or does not perform properly.
 - 2. When the deficiency has been corrected, the Contractor shall notify the CxA. The CxA shall reschedule the test and the Contractor shall retest.
 - 3. Contractor shall bear the cost of Owner and CxA personnel time witnessing retesting.
 - 4. Contractor shall bear the cost of Owner and CxA personnel time witnessing retesting if the test failed due to failure to execute the relevant Prefunctional Checklist correctly. If the test failed for reasons that would not have been identified in the Prefunctional Checklist process, Contractor shall bear the cost of the second and any subsequent retests.
- G. Deferred Functional Performance Testing: Some tests may need to be performed later, after Substantial Completion, due to partial occupancy, equipment, seasonal requirements, design, or other site conditions. Performance of these tests remains the Contractor's responsibility regardless of timing.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. Division 23 and 26 contractors shall provide all testing equipment required to fulfill the testing requirements outlined in this Section.
- B. Calibration Tolerances: Provide testing equipment of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified. If not otherwise noted, the following minimum requirements apply:
 - 1. Temperature Sensors and Digital Thermometers: Certified calibration within past year to accuracy of 0.5 deg F and resolution of plus/minus 0.1 deg F.
 - 2. Pressure Sensors: Accuracy of plus/minus 2.0 percent of the value range being measured (not full range of meter), calibrated within the last year.
 - 3. Calibration: According to the manufacturer's recommended intervals and when dropped or damaged; affix calibration tags or keep certificates readily available for inspection.
- C. Equipment-Specific Tools: When special testing equipment, tools, and instruments are specific to a piece of equipment, are only available from the vendor, and are required in order to accomplish startup or Functional Testing, provide such equipment, tools, and instruments as part of the work at no extra cost to the Owner; such equipment, tools, and instruments are to become the property of the Owner.

PART 3 - EXECUTION

3.1 COMMISSIONING RESPONSIBILITIES - NON-CONTRACTOR TEAM MEMBERS

A. Introduction:

1. A multi-disciplinary team carries out commissioning. The commissioning responsibilities of some non-contractor team members during the construction and acceptance phases of the project are provided here for information and to provide some context for the overall process.

B. Commissioning Authority Responsibilities:

- 1. Plan, organize, and implement the commissioning process as specified herein.
- 2. Provide commissioning plan.
- 3. Revise the commissioning plan as required during construction.
- 4. Chair commissioning meetings and prepare and distribute minutes to all commissioning team members, whether or not they attend the meeting.
- 5. Coordinate the commissioning work and, with the GC, ensure that commissioning activities are being scheduled into the master schedule.
- 6. Perform site visits, as necessary, to observe component and system installations.
- 7. Monitor system verification checks and ensure the results are documented as the checks are done.
- 8. Approve air and water systems balancing by spot testing, by reviewing completed reports and by selected site observation.
- 9. Coordinate, witness, and approve functional performance tests performed by installing contractors. Coordinate retesting as necessary until satisfactory performance is achieved.
- 10. Witness all functional performance tests and document the results.
- 11. Prepare and maintain the Commissioning Issues Log to track system deficiencies.
- 12. Provide a final commissioning report.

3.2 COMMISSIONING RESPONSIBILITIES - GENERAL CONTRACTOR

- A. The General Contractor has responsibility to ensure the overall completion of the work. In this regard, he shall:
 - 1. Participate as required in the HVAC commissioning process.
 - 2. Cooperate with the CxA for resolution of issues recorded in the Issues Log.
 - 3. Integrate and coordinate commissioning process activities with the construction schedule.
 - 4. Ensure the Mechanical Contractor performs all assigned HVAC commissioning responsibilities as specified in Article Commissioning Responsibilities Mechanical Contractor.
 - 5. Ensure the testing, adjusting, and balancing agency performs HVAC commissioning responsibilities as specified in Article Commissioning Responsibilities TAB Agency, if TAB is contracted through the General Contractor.
 - 6. Ensure the Electrical Contractor performs all assigned HVAC commissioning responsibilities as specified in Article Commissioning Responsibilities Electrical Contractor.
 - 7. Ensure the cooperation and participation in the HVAC commissioning process of all other subcontractors as applicable.
- B. The General Contractor shall assign a representative to the commissioning team, and submit the person's name to the CxA within one month of the award of the contract. The representative shall have the authority to make decisions on behalf of the General Contractor as they relate to the organization and scheduling of HVAC commissioning. The representative shall facilitate communications among all Contractors and suppliers and other commissioning team members, and shall foster the necessary cooperative action. One specific responsibility shall be to attend commissioning meetings and ensure action items arising from them are attended to as required to allow the commissioning process to proceed on schedule.

C. In the event that any scheduled equipment or system startups or functional performance tests are terminated because the CxA or Mechanical Engineer discover deficient or incomplete work, or due to non-attendance of required Contractor or supplier personnel the Contractor or subcontractor responsible for the termination shall also be responsible for paying reasonable costs of time and travel expenses for any or all of the following representatives who were physically present for the purpose of witnessing the start or function performance tests: the CxA, the Mechanical Engineer, the Electrical Engineer, and the Owner. The Owner may provide a statement to the General Contractor identifying the specific activity that was terminated, the scheduled date, and a list of those in attendance, along with their reasonable time and travel expense costs.

3.3 COMMISSIONING RESPONSIBILITIES - MECHANICAL CONTRACTOR

- A. The Mechanical Contractor, and all mechanical subcontractors and suppliers, shall cooperate with the CxA and other commissioning team members to facilitate the successful completion of the commissioning process.
- B. The Contractor shall assign a representative to the commissioning team, and submit the person's name to the CxA within one month of the award of the contract. The representative shall have the authority to make decisions on behalf of the Mechanical Contractor as they relate to the organization and scheduling of HVAC commissioning. The representative shall ensure communications between Mechanical Contractors and suppliers and all other commissioning team embers, and shall foster the necessary cooperative action. One specific responsibility shall be to attend commissioning meetings, and ensure action items arising from them are attended to as required to allow the commissioning process to proceed on schedule.
- C. The Mechanical Contractor, and all mechanical subcontractors and suppliers, shall cooperate with the CxA in carrying out the HVAC commissioning process. In this context, the Mechanical Contractor shall:
 - 1. Each contractor and subcontractor shall include in their quotes the cost of participating in the commissioning process as specified herein.
 - 2. Ensure the Temperature Controls Contractor performs HVAC commissioning responsibilities as listed in Article Commissioning Responsibilities Controls Contractor.
 - 3. Ensure the testing, adjusting, and balancing agency performs HVAC commissioning responsibilities as specified in Article Commissioning Responsibilities TAB Agency, if TAB is contracted through the Mechanical Contractor.
 - 4. Ensure participation of major equipment manufacturers in appropriate startup, testing, and training activities.
 - 5. Attend commissioning meetings scheduled by the CxA.
 - 6. Provide a complete set of as-built drawings and O&M Manuals to the CxA.
 - 7. Prepare preliminary schedule for mechanical system orientation and inspections, O&M Manual submission, training sessions, pipe and duct system testing, flushing and cleaning, equipment start TAB, and task completion for use by the CxA. Update schedule as appropriate throughout the construction period.
 - 8. Notify the CxA a minimum of two weeks in advance of scheduled equipment and system startups, so the CxA may witness system verifications and equipment and system startups.
 - 9. Provide sufficient personnel to assist the CxA as required during system verification and functional performance testing.
 - 10. Prior to startup, inspect, check, and confirm the correct and complete installation of all equipment and systems for which system verification checklists are included in the Commissioning Plan. Document the results of all inspections and checks on the checklists and sign them. If deficient or incomplete work is discovered, ensure corrective action is taken and recheck until the results are satisfactory and the system is ready for safe startup.
 - 11. Notify the CxA a minimum of two weeks in advance of the time for start of the TAB work. Attend the initial TAB meeting for review of the TAB procedures.

- 12. Provide equipment and systems startup resources as specified and required. If, during an attempted equipment or system startup, deficient or incomplete work is discovered that would preclude safe operation, the startup shall be aborted until corrective action has been taken. Ensure such action is taken and verified before rescheduling a new startup. Those responsible for deficient or incomplete work shall be responsible for costs in accordance with this Section.
- 13. Carry out performance checks to ensure that all equipment and systems are fully functional and ready for the CxA to witness formal functional performance tests.
- 14. Operate equipment and systems for functional performance tests in accordance with the Commissioning Plan and as directed by the CxA. If improper functionality, incomplete work, or other deficiencies affecting system performance are discovered, the functional performance tests will be stopped by the CxA. Those responsible for deficient or incomplete work shall be responsible for costs in accordance with this Section. Ensure that all corrections necessary for full and complete system operation as specified are complete then, with the Temperature Controls Contractor and other applicable subcontractors, carry out functional performance checks to confirm correct operation before applying to the CxA to reschedule the functional performance tests for the system in question.

3.4 COMMISSIONING RESPONSIBILITIES - TAB AGENCY

- A. With respect to commissioning, the TAB agency shall:
 - 1. Include costs for HVAC commissioning requirements in the quoted price.
 - 2. Attend commissioning meetings scheduled by the CxA prior to, and during, onsite TAB work being done.
 - 3. Submit proposed TAB procedures to the CxA and Mechanical Engineer for review and acceptance.
 - 4. A copy of the TAB report shall be submitted to the CxA prior to the start of system functional performance testing. The report shall contain the results in a clear format. The report should follow the latest and most rigorous reporting recommendations by AABC, NEBB or ASHRAE Standard 111.
 - 5. Provide skilled TAB technician to assist during system verification and functional performance testing as required by the CxA.

3.5 COMMISSIONING RESPONSIBILITIES - CONTROLS CONTRACTOR

- A. With respect to commissioning, the Controls Contractor shall:
 - 1. Include cost for commissioning requirements in the quoted price.
 - 2. Attend commissioning meetings scheduled by the CxA.
 - 3. Provide a complete set of as-built drawings and O&M Manuals to the CxA.
 - 4. Provide the following submittals to the CxA eight (8) weeks minimum (or earlier as required for product lead time) prior to equipment prefunctional startup for review:
 - a. Control shop drawings including equipment data sheets.
 - b. Narrative description of all control sequences for each piece of equipment controlled. These shall be provided to the CxA in electronic format upon request.
 - c. Proposed list of alarm points including alarm notification levels.
 - d. Project specific operator workstation graphics screen shots.
 - 5. Inspect, check, and confirm the proper installation and performance of controls/BAS hardware and software provided by others.
 - 6. Integrate installation and programming scheduling with construction and commissioning schedules.

- 7. Inspect, check, and confirm the correct installation and operation of input and output field points and devices through documented and signed off point-to-point checkouts.
- 8. Provide support and coordination with TAB Contractor on all interfaces between controls and TAB scopes of work. Provide, at no additional cost to the TAB and CxA, all devices, such as portable operator's terminals and all software for the TAB agency to use in completing TAB procedures.
- 9. In conjunction with the Mechanical Contractor, demonstrate system performance to the CxA including all modes of system operation (e.g. occupied, unoccupied, emergency) during the functional performance tests. If improper functionality, incomplete work, or other deficiencies affecting system performance are discovered, the functional performance tests will be stopped by the CxA. Those responsible for deficient or incomplete work will be responsible for costs in accordance with this Section.
- 10. Provide skilled control system technician to assist during system verification and functional performance testing.

3.6 COMMISSIONING RESPONSIBILITIES - ELECTRICAL CONTRACTOR

- A. With respect to commissioning, the Electrical Contractor shall:
 - 1. Include cost for HVAC and electrical systems commissioning requirements in the quoted price.
 - 2. Review design with respect to providing power to the HVAC equipment.
 - a. Verify that proper hardware specifications exist for functional performance and sequence of operation required by specification.
 - b. Verify that proper safeties and interlocks are included in the design of electrical connections for HVAC equipment.
 - 3. Attend commissioning meetings scheduled by the CxA.
 - 4. Provide a complete set of as-built drawings and O&M Manuals to the CxA.
 - 5. Schedule work so that required electrical installations are completed and systems verification checks and functional performance tests can be carried out on schedule.
 - 6. Attend commissioning meetings scheduled by the CxA.
 - 7. Ensure participation of major equipment manufacturers in appropriate startup, testing, and training activities.
 - 8. Inspect, check, and confirm in writing the proper installation and performance of all electrical services provided.
 - 9. Provide skilled electrical system technicians to assist during system verification and functional performance testing as required by the CxA.

3.7 TEST PROCEDURES GENERAL

- A. Provide skilled technicians to execute starting of equipment and to execute the Functional Performance Tests. Ensure that they are available and present during the agreed upon schedules and for sufficient duration to complete the necessary tests, adjustments, and problem solving.
- B. Provide all necessary materials and system modifications required to produce the flows, pressures, temperatures, and conditions necessary to execute the test according to the specified conditions. At completion of the test, return all affected equipment and systems to their pretest condition.
- C. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

- D. The CxA may direct that set points be altered when simulating conditions is not practical.
- E. Sampling: Where Functional Performance Testing of fewer than the total number of multiple identical or near-identical items is explicitly permitted, perform sampling as follows:
 - 1. Identical Units: Defined as units with the same application and sequence of operation; only minor size or capacity difference.
 - 2. Sampling is not allowed for:
 - a. Major equipment.
 - b. Life-safety-critical equipment.
 - c. Prefunctional Checklist execution.
 - 3. If frequent failures occur, resulting in more troubleshooting than testing, the CxA may stop the testing and require the Contractor to perform and document a checkout of the remaining units prior to continuing testing.

END OF SECTION 019113

SECTION 210100 - GENERAL REQUIREMENTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Division 21, 22, and 23 Conditions apply to this Section.

1.2 SUMMARY

- A. This Section includes general fire suppression requirements and shall apply to all phases of the work specified, indicated on the drawings or required to provide for complete installation of fire suppression systems.
- B. Refer to Section 230100 for "General Requirements for Mechanical Systems."
- C. Refer to Section 230500 for "Basic Mechanical Materials and Methods."
- D. Refer to Section 230505 for "Basic Mechanical Piping Materials and Methods."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 210100

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following fire-suppression piping inside the building:
 - 1. Wet-pipe sprinkler systems.
- B. Fire suppression scope of work is limited to the adjustment / modification of piping and heads as required to accommodate HVAC upgrades.

1.3 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.4 PERFORMANCE REQUIREMENTS

- A. Standard Piping System Component Working Pressure: Listed for at least 175 psig.
- B. Fire-suppression system design shall be approved by authorities having jurisdiction.
 - 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 - 2. Sprinkler Occupancy Hazard Classifications: Per NFPA 13.
 - 3. Minimum Density for Automatic-Sprinkler Piping Design: Per NFPA 13.
 - 4. Maximum Protection Area per Sprinkler: Per UL listing.
 - 5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13.

1.5 SUBMITTALS

- A. Qualification Data: Fire sprinkler designer with NICET-III certification or registered professional fire protection engineer.
- B. Product Data: For the following:
 - 1. Piping materials, including sprinkler specialty fittings.
 - 2. Sprinklers, escutcheons, and guards. Include sprinkler flow characteristics, mounting, finish, and other pertinent data.

- C. Sprinkler Piping Drawings: The anticipated scope of work does not warrant / require sprinkler piping drawings.
- D. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Material and Test Certificate for Underground Piping."
- E. Operation and Maintenance Data: For sprinkler specialties include in emergency, operation, and maintenance manuals.
- F. See "Submittal Schedule" at the end of Section 230100 "General Requirements for Mechanical Systems."

1.6 QUALITY ASSURANCE

A. Installer Qualifications:

- 1. Installer's responsibilities include designing, fabricating, and installing fire-suppression systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified fire sprinkler designer with NICET-III certification or registered professional fire protection engineer.
- B. NFPA Standards: Fire-suppression-system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."

1.7 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Sprinkler Cabinets: Finished, wall-mounting, steel cabinet with hinged cover, with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler on Project.

PART 2 - PRODUCTS

2.1 STEEL PIPE AND FITTINGS

A. Threaded-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, with factory- or field-formed threaded ends.

- 1. Cast-Iron Threaded Flanges: ASME B16.1.
- 2. Malleable-Iron Threaded Fittings: ASME B16.3.
- 3. Gray-Iron Threaded Fittings: ASME B16.4.
- 4. Steel Threaded Couplings: ASTM A 865.
- B. Grooved-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, with factory- or field-formed, square-cut- or roll-grooved ends.
 - 1. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD
 - 2. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, pre-lubricated rubber gasket listed for use with housing, and steel bolts and nuts.
- C. Threaded-End, Schedule 30 Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and equal to or greater than Schedule 30; or ASTM A 795 and ASME B36.10M, Schedule 30 wrought-steel pipe; with factory- or field-threaded ends.
 - 1. Cast-Iron Threaded Flanges: ASME B16.1.
 - 2. Malleable-Iron Threaded Fittings: ASME B16.3.
 - 3. Gray-Iron Threaded Fittings: ASME B16.4.
 - 4. Steel Threaded Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, seamless steel pipe. Include ends matching joining method.
 - 5. Steel Threaded Couplings: ASTM A 865.
- D. Grooved-End, Schedule 30 Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and equal to or greater than Schedule 30; or ASTM A 795 and ASME B36.10M, Schedule 30 wrought-steel pipe; with factory- or field-formed, roll-grooved ends.
 - 1. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD
 - 2. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, pre-lubricated rubber gasket listed for use with housing, and steel bolts and nuts.
- E. Grooved-End, Schedule 10 Steel Pipe: ASTM A 135 or ASTM A 795, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10; with factory- or field-formed, roll-grooved ends.
 - 1. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.
 - 2. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, rubber gasket listed for use with housing, and steel bolts and nuts.

2.2 DIELECTRIC FITTINGS

A. Assembly shall be copper alloy, ferrous, and insulating materials with ends matching piping system.

- B. Dielectric Unions: Factory-fabricated assembly, designed for 250-psig minimum working pressure at 180 deg F. Include insulating material that isolates dissimilar materials and ends with inside threads according to ASME B1.20.1.
- C. Dielectric Flanges: Factory-fabricated companion-flange assembly, for 175-psig minimum working-pressure rating as required for piping system.
- D. Dielectric Flange Insulation Kits: Components for field assembly shall include CR or phenolic gasket, PE or phenolic bolt sleeves, phenolic washers, and steel backing washers.
- E. Dielectric Couplings: Galvanized steel with inert and noncorrosive thermoplastic lining and threaded ends and 300-psig working-pressure rating at 225 deg F.
- F. Dielectric Nipples: Electroplated steel with inert and noncorrosive thermoplastic lining, with combination of threaded, or grooved ends and 300-psig working-pressure rating at 225 deg F.

2.3 SPRINKLER SPECIALTY FITTINGS

- A. Sprinkler specialty fittings shall be UL listed or FMG approved, with 175-psig minimum working-pressure rating, and made of materials compatible with piping.
- B. Sprinkler Drain Fittings: Cast- or ductile-iron body; with threaded or locking-lug inlet and outlet, test valve, and orifice and sight glass.
- C. Sprinkler Branch-Line Test Fittings: Brass body with threaded inlet, capped drain outlet, and threaded outlet for sprinkler.
- D. Sprinkler Inspector's Test Fitting: Cast- or ductile-iron housing with threaded inlet and drain outlet and sight glass.
- E. Drop-Nipple Fittings: UL 1474, adjustable with threaded inlet and outlet, and seals.

2.4 FLEXIBLE SPRINKLER HOSE FITTINGS

- 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Victaulic Company.
 - b. Reliable Automatic Sprinkler Co.
- 2. Standard: UL 1474.
- 3. Type: Braided flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
- 4. Pressure Rating: 175-psig minimum.
- 5. Size: Same as connected piping, for sprinkler.
- 6. Maximum Length: 48 inches.

2.5 SPRINKLERS

- A. Sprinklers shall be UL listed and FMG approved, with 175-psig minimum pressure rating.
- B. Automatic Sprinklers: With heat-responsive element complying with the following:

- 1. UL 199, for nonresidential applications.
- C. Sprinkler Types and Categories: Nominal 1/2-inch orifice for "Ordinary" temperature classification rating, unless otherwise indicated or required by application.
- D. Sprinkler types, features, and options as follows:
 - 1. Concealed ceiling sprinklers, including flat cover plates.
 - 2. Extended-coverage sprinklers.
 - 3. Flush ceiling sprinklers, including escutcheon.
 - 4. Pendent sprinklers.
 - 5. Pendent, dry-type sprinklers.
 - 6. Flexible, dry-type sprinklers.
 - 7. Quick-response sprinklers.
 - 8. Recessed sprinklers, including escutcheon.
 - 9. Sidewall sprinklers.
 - 10. Sidewall, dry-type sprinklers.
 - 11. Upright sprinklers.
- E. Sprinkler Finishes: Chrome plated, bronze, and painted.
- F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Color selected by Architect from supplier's standard colors.
 - 2. Sidewall Mounting: Color selected by Architect from supplier's standard colors.
- G. Sprinkler Guards: Wire-cage type, including fastening device for attaching to sprinkler.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS, GENERAL

A. Flanges, flanged fittings, unions, nipples, and transition and special fittings with finish and pressure ratings same as or higher than system's pressure rating may be used in aboveground applications, unless otherwise indicated.

3.2 SPRINKLER SYSTEM PIPING APPLICATIONS

- A. Standard-Pressure, Wet-Pipe Sprinkler System, 175-psig Maximum Working Pressure:
 - 1. Sprinkler Mains:
 - a. Steel piping as allowed by NFPA 13 and Authority Having Jurisdiction with wall thickness of schedule 10 or greater.
 - 2. Branch Piping:
 - a. Steel piping as allowed by NFPA 13 and Authority Having Jurisdiction with wall thickness of schedule 10 or greater.

3.3 JOINT CONSTRUCTION

- A. Refer to Division 23 Section "Basic Mechanical Piping Materials and Methods" for basic piping joint construction.
- B. Threaded Joints: Comply with NFPA 13 for pipe thickness and threads. Do not thread pipe smaller than NPS 8 with wall thickness less than Schedule 40 unless approved by authorities having jurisdiction and threads are checked by a ring gage and comply with ASME B1.20.1.
- C. Pressure-Sealed Joints: Use UL-listed tool and procedure. Include use of specific equipment, pressure-sealing tool, and accessories.
- D. Grooved Joints: Assemble joints with listed coupling and gasket, lubricant, and bolts.
 - 1. Steel Pipe: Square-cut or roll-groove piping as indicated. Use grooved-end fittings and rigid, grooved-end-pipe couplings, unless otherwise indicated.
 - 2. General Requirements:
 - a. All grooved joint couplings, fittings, valves, and specialties shall be the products of a same manufacturer. Grooving tools shall be of the same manufacturer as the grooved components.
 - b. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.
 - c. Couplings shall be fully installed at visual pad-to-pad offset contact. Couplings that require gapping of bolt pads or specific torque ratings for proper installation are not permitted.
 - d. Install in accordance with the manufacturer's latest published installation instructions. Pipe ends shall be clean and free from indentations, projections and roll marks in the area from pipe end to (and including) groove. Gasket shall be manufactured by the coupling manufacturer and verified as suitable for the intended service. A factory trained representative (direct employee) of the coupling manufacturer shall provide on-site training for contractor's field personnel in the use of grooving tools, application of groove, and product installation. The representative shall periodically visit the job site and review installation to ensure best practices in grooved joint installation are being followed. Contractor shall remove and replace any improperly installed products.
- E. Dissimilar-Metal Piping Joints: Construct joints using dielectric fittings compatible with both piping materials.
 - 1. NPS 2 and Smaller: Use dielectric unions, couplings, or nipples.
 - 2. NPS 2-1/2 to NPS 4: Use dielectric flanges.
 - 3. NPS 5 and Larger: Use dielectric flange insulation kits.

3.4 PIPING INSTALLATION

- A. Refer to Division 23 Section "Basic Mechanical Piping Materials and Methods" for basic piping installation.
- B. Use approved fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- C. Install sprinkler piping with drains for complete system drainage.
- D. Install ball drip valves to drain piping between fire department connections and check valves. Drain to floor drain or outside building.

- E. Hangers and Supports: Comply with NFPA 13 for hanger materials.
- F. Fill wet-pipe sprinkler system piping with water.

3.5 SPRINKLER APPLICATIONS

- A. Drawings indicate sprinkler types to be used. Where specific types are not indicated, use the following sprinkler types:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Recessed sprinklers.
 - 3. Wall Mounting: Sidewall sprinklers.
 - 4. Spaces Subject to Freezing: Pendent, dry sprinklers or sidewall, dry sprinklers.
 - 5. Special Applications: Extended-coverage and quick-response sprinklers where required.
 - 6. Sprinkler Finishes:
 - a. Upright, Pendent, and Sidewall Sprinklers: Color selected by Architect from standard supplier color options in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view;.
 - b. Concealed Sprinklers: Rough brass, with factory-painted flat cover plate with color selected by Architect from standard supplier color options.
 - c. Recessed Sprinklers: Color selected by Architect from standard supplier color options.

3.6 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels and tiles.
- B. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing. Use dry-type sprinklers with water supply from heated space.
- C. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid. Do not exceed manufacturer's recommended quantity of bends or maximum bend radius.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Install ball drip valves at each check valve for fire department connection. Drain to floor drain or outside building.
- D. Connect piping to specialty valves, hose valves, specialties, fire department connections, and accessories.

3.8 LABELING AND IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

3.9 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Energize circuits to electrical equipment and devices.
 - 4. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 5. Coordinate with fire alarm tests. Operate as required.
 - 6. Verify that equipment hose threads are same as local fire department equipment.
- B. Report test results promptly and in writing to Architect and authorities having jurisdiction.

3.10 CLEANING AND PROTECTION

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.
- C. Protect sprinklers from damage until Substantial Completion.

END OF SECTION 211000

SECTION 220523 – VALVES FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes general duty valves common to several mechanical piping systems. Special purpose valves are specified in Division 22 piping system Sections.

1.3 SUBMITTALS

- A. General: Submit each item in this Article according to the Conditions of the Contract and Division 01 Specification Sections.
- B. Product Data for each valve type. Include body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and arrangement, dimensions and required clearances, and installation instructions. Include list indicating valve and its application.
- C. Maintenance data for valves to include in the operation and maintenance manual specified in Division 01. Include detailed manufacturer's instructions on adjusting, servicing, disassembling, and repairing.
- D. See "Submittal Schedule" at the end of Section 230100 "General Requirements for Mechanical Systems."

1.4 QUALITY ASSURANCE

- A. ASME Compliance: Comply with ASME B31.9 for building services piping and ASME B31.1 for power piping.
- B. All valves used in potable water service shall be certified lead free per NSF-61G and NSF 372.
- C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ball Valves:
 - a. Conbraco Industries, Inc.; Apollo Division.

- b. Hammond Valve Corporation.
- c. Milwaukee Valve Company, Inc.
- d. NIBCO Inc.
- e. Stockham Valves & Fittings, Inc.
- f. Tyler Pipe.
- g. Victaulic Company of America.

2. Check Valves:

- a. Cla-Val Co.
- b. Conbraco Industries, Inc.; Apollo Division.
- c. Hammond Valve Corporation.
- d. Keystone Valve USA, Inc.
- e. Kitz Corp. of America.
- f. Metraflex Company.
- g. Milwaukee Valve Company, Inc.
- h. NIBCO Inc.
- i. Red-White Valve Corp.
- j. Stockham Valves & Fittings, Inc.
- k. Tyler Pipe.
- 1. Val-Matic Valve & Mfg. Corp.
- m. Victaulic Company of America.

2.2 BASIC, COMMON FEATURES

- A. Pressure and Temperature Ratings: As indicated in the "Application Schedule" of Part 3 of this Section and as required to suit system pressures and temperatures.
- B. Sizes: Same size as upstream pipe, unless otherwise indicated.
- C. Operators: Use specified operators and handwheels, except provide the following special operator features:
 - 1. Lever Handles: For quarter-turn valves 6 inches and smaller.
 - 2. Memory Stops: For balancing applications.
- D. Extended Stems: Where insulation is indicated or specified, provide extended stems arranged to receive insulation.
- E. Threads: ASME B1.20.1.
- F. Flanges: ASME B16.1 for cast iron, ASME B16.5 for steel, and ASME B16.24 for bronze valves.
- G. Solder Joint: ASME B16.18.

2.3 BRONZE BALL VALVES

A. Ball Valves, 4 Inches and Smaller: MSS SP-110, Class 150, 600-psi CWP, ASTM B 584 or ASTM B283 bronze body and bonnet, 2-piece construction; chrome-plated brass ball, standard port for 1/2-inch valves and smaller and conventional port for 3/4-inch valves and larger; blowout proof; bronze or brass stem; teflon seats and seals; threaded or soldered end connections, lever handle operator. Valves shall be certified lead free.

2.4 CHECK VALVES

- A. Swing Check Valves, 2-1/2 Inches and Smaller: MSS SP-80; Class 125, 200-psi CWP, or Class 150, 300-psi CWP; horizontal swing, Y-pattern, ASTM B 62 cast-bronze body and cap, rotating bronze disc with rubber seat or composition seat, threaded or soldered end connections. Valves shall be certified lead free.
- B. Wafer Check Valves: Class 125, 200-psi CWP, ASTM A 126 cast-iron body, bronze disc/plates, stain-less-steel pins and springs, Buna N seals, installed between flanges. Valves shall be certified lead free.
- C. Lift Check Valves: Class 125, ASTM B 62 bronze body and cap (main components), horizontal or vertical pattern, lift-type, bronze disc or Buna N rubber disc with stainless-steel holder threaded or soldered end connections. Valves shall be certified lead free.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance of valves. Do not proceed with installation until unsatisfactory conditions have been corrected.
- B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- C. Operate valves from fully open to fully closed positions. Examine guides and seats made accessible by such operation.
- D. Examine threads on valve and mating pipe for form and cleanliness.
- E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Check gasket material for proper size, material composition suitable for service, and freedom from defects and damage.
- F. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves as indicated, according to manufacturer's written instructions.
- B. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate the general arrangement of piping, fittings, and specialties.
- C. Install valves with unions or flanges at each piece of equipment arranged to allow servicing, maintenance, and equipment removal without system shutdown.
- D. Locate valves for easy access and provide separate support where necessary.
- E. Install valves in horizontal piping with stem at or above the center of the pipe.
- F. Install valves in a position to allow full stem movement.

- G. Installation of Check Valves: Install for proper direction of flow as follows:
 - 1. Swing Check Valves: Horizontal position with hinge pin level.
 - 2. Lift Check Valve: With stem upright and plumb.

3.3 IDENTIFICATION

A. Install valve tags. Comply with requirements in Section 230553 "Identification for Mechanical Piping and Equipment" for valve tags and schedules.

3.4 VALVE END SELECTION

- A. Select valves with the following ends or types of pipe/tube connections:
 - 1. Copper Tube Size, 2-1/2 Inches and Smaller: Solder ends.

3.5 APPLICATION SCHEDULE

- A. General Application:
 - 1. Use ball valves for shutoff duty.
 - 2. Use ball valves for throttling duty.
 - 3. Refer to piping system Specification Sections for specific valve applications and arrangements.
- B. Domestic Water Systems: Use the following valve types:
 - 1. Ball Valves: Class 150, 600-psi CWP, with stem extension.
 - 2. Bronze Swing Check: Class 125, with rubber seat.
 - 3. Check Valves: Class 125, swing or wafer type as indicated.

3.6 ADJUSTING

A. Adjust or replace packing after piping systems have been tested and put into service, but before final adjusting and balancing. Replace valves if leak persists.

END OF SECTION 220523

SECTION 220720 - PIPE INSULATION FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes preformed, rigid and flexible pipe insulation; insulating cements; accessories and attachments; and sealing compounds.

1.3 SUBMITTALS

- A. Product Data: Include product data description, list of materials, thickness, density and k-values for each product type, locations, manufacturer's installation instructions, flames spread and smoke developed ratings.
- B. See "Submittal Schedule" at the end of Section 230100 "General Requirements for Mechanical Systems."

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mineral-Fiber Insulation:
 - a. CertainTeed Manson.
 - b. Knauf FiberGlass GmbH.
 - c. Owens-Corning Fiberglas Corp.
 - d. Schuller International, Inc.

2.2 INSULATION MATERIALS

- A. Mineral-Fiber Insulation: Glass fibers bonded with a thermosetting resin complying with the following:
 - 1. Preformed Pipe Insulation: Comply with ASTM C 547, Type 1, with factory-applied, all-purpose, vapor-retarder jacket.
 - a. Nominal density is 2.5 lb/cu. Ft. or more.
 - b. Thermal conductivity (k-value) at 100 deg F is 0.28 Btu x in./h x sq. ft. x deg F or less
 - 2. Blanket Insulation: Comply with ASTM C 553, Type II, without facing.
 - 3. Fire-Resistant Adhesive: Comply with MIL-A-3316C in the following classes and grades:
 - Class 1, Grade A for bonding glass cloth and tape to unfaced glass-fiber insulation, for sealing edges of glass-fiber insulation, and for bonding lagging cloth to unfaced glass-fiber insulation
 - b. Class 2, Grade A for bonding glass-fiber insulation to metal surfaces.
 - 4. Vapor-Retarder Mastics: Fire- and water-resistant, vapor-retarder mastic for indoor applications. Comply with MIL-C-19565C, Type II.
 - 5. Mineral-Fiber Insulating Cements: Comply with ASTM C 195.
 - 6. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
- B. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.
- C. Standard PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 20-mil- thick, high-impact, ultraviolet-resistant PVC.
 - 1. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
 - 2. Adhesive: As recommended by insulation material manufacturer.

2.3 ACCESSORIES AND ATTACHMENTS

- A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, pre-sized a minimum of 8 oz./sq. yd, 4 inch tape width.
- B. Bands: 3/4 inch wide, materials compatible with jacket:

2.4 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 - EXECUTION

3.1 EXAMINATION AND PREPARATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

B. Surface Preparation: Clean and dry pipe and fitting surfaces. Remove materials that will adversely affect insulation application.

3.2 GENERAL APPLICATION REQUIREMENTS

- A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.
- B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each piping system.
- C. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.
- D. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.
- E. Apply insulation with the least number of joints practical.
- F. Apply insulation over fittings, valves, and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated. Refer to special instructions for applying insulation over fittings, valves, and specialties.
- G. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic.
- H. Insulation Terminations: For insulation application where vapor retarders are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.
- I. Apply adhesives and mastics at the manufacturer's recommended coverage rate.
- J. Apply insulation with integral jackets as follows:
 - 1. Pull jacket tight and smooth.
 - 2. Circumferential Joints: Cover with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip and spaced 4 inches o.c.
 - 3. Longitudinal Seams: Overlap jacket seams at least 1-1/2 inches. Apply insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap.
 - 4. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to flanges, unions, valves, and fittings.
 - 5. At penetrations in jackets for thermometers and pressure gages, fill and seal voids with vapor-retarder mastic.
- K. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- L. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 for firestopping and fire-resistive joint sealers.
- M. Insulation Installation at Floor Penetrations:

- 1. Pipe: Install insulation continuously through floor penetrations.
- 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07.

3.3 MINERAL-FIBER INSULATION APPLICATION

- A. Apply insulation to straight pipes and tubes buy securing each layer of preformed pipe insulation to pipe with wire, tape, or bands without deforming insulation materials.
- B. Apply preformed pipe insulation to outer diameter of pipe flange.
- C. Apply insulation to fittings and elbows as follows:
 - 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation elbows and fittings are not available, apply mitered sections of pipe insulation, or glass-fiber blanket insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire, tape, or bands.
 - 3. Cover fittings with standard PVC fitting covers.
- D. Apply insulation to valves and specialties as follows:
 - 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation sections are not available, apply glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Use preformed standard PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

3.4 INSULATION APPLICATION SCHEDULE

- A. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:
 - 1. Flexible connectors.
 - 2. Vibration-control devices.
 - 3. Chrome-plated pipes and fittings, unless potential for personnel injury.
 - 4. Air chambers, unions, strainers, check valves, plug valves, and flow regulators.
- B. See drawings for "PIPING INSULATION SCHEDULE".

END OF SECTION 220720

SECTION 221116 - WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes water distribution piping from locations indicated to fixtures and equipment inside building.

1.3 SYSTEM PERFORMANCE REQUIREMENTS

A. Provide components and installation capable of producing piping systems with the 125 psig minimum working-pressure ratings, unless otherwise indicated:

1.4 QUALITY ASSURANCE

- A. Provide listing/approval stamp, label, or other marking on piping made to specified standards.
- B. Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.
- C. NSF Compliance:
 - Comply with NSF 61 Annex G for materials for water-service piping and specialties for domestic water.
- D. Installer Qualifications: Installers of pressure-sealed joints are to be certified by pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

1.5 SUBMITTALS

- A. Product Data: Tube and fittings.
- B. System purging and disinfecting activities report.
- C. Field quality-control reports.
- D. See "Submittal Schedule" at the end of Section 230100 "General Requirements for Mechanical Systems."

1.6 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service in accordance with requirements indicated:
 - 1. Notify Owner no fewer than two weeks in advance of proposed interruption of water service.
 - 2. Do not proceed with interruption of water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Domestic water piping, tubing, fittings, joints, and appurtenances intended to convey or dispense water for human consumption are to comply with the U.S. Safe Drinking Water Act, with requirements of authorities having jurisdiction, and with NSF 61 and NSF 372, or be certified in compliance with NSF 61 and NSF 372 by an ANSI-accredited third-party certification body, in that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

2.2 PIPES AND TUBES

- A. General: Applications of the following pipe and tube materials are indicated in Part 3 "Piping Applications" Article.
- B. Hard Copper Tube: ASTM B 88, Types L, water tube, drawn temper.

2.3 PIPE AND TUBE FITTINGS

- A. General: Applications of the following pipe and tube fitting materials are indicated in Part 3 "Piping Applications" Article.
- B. Copper, Solder-Joint Pressure Fittings: ASME B16.18 cast-copper alloy or ASME B16.22 wrought copper.
- C. Copper, Grooved-End Fittings: ASTM B 75 copper tube or ASTM B 584 bronze castings.
- D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.
- E. Copper Unions: ASME B16.18, cast-copper-alloy, hexagonal-stock body with ball-and-socket joint, metal-to-metal seating surfaces, and solder-joint, threaded, or solder-joint and threaded ends. Include threads conforming to ASME B1.20.1 on threaded ends.
- F. Pressure-Seal-Joint Fittings, Copper or Bronze Domestic Water:
 - 1. Source Limitations: Obtain pressure-seal-joint fittings, copper or bronze, from single manufacturer.
 - 2. Housing: Copper.
 - 3. O-Rings and Pipe Stops: EPDM.
 - 4. Tools: Manufacturer's special tools.
 - 5. Minimum 200 psig working-pressure rating at 250 deg F.

2.4 JOINING MATERIALS

- A. General: Applications of the following piping joining materials are indicated in Part 3 "Piping Applications" Article.
- B. Refer to Division 23 Section "Basic Mechanical Materials and Methods" for commonly used joining materials.
- C. Solder: ASTM B 32, Alloy Sn95, Sn94, or E; lead free.
- D. Brazing Filler Metal: AWS A5.8, BCuP, copper phosphorus or BAg, silver classification.
- E. Transition Couplings: Coupling or other manufactured fitting same size as, with pressure rating at least equal to, and with ends compatible with piping to be joined.

2.5 VALVES

- A. Refer to Division 22 Section "Valves for Plumbing" for general-duty valves.
- B. Refer to Division 22 Section "Plumbing Specialties" for special-duty valves.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Transition and special fittings with pressure ratings at least equal to piping pressure rating may be used in applications below, unless otherwise indicated.
- B. Fitting Option: Mechanically formed tee-branch outlets and brazed joints may be used on aboveground copper tubing.
- C. Water Distribution Piping:
 - 1. Aboveground (2-1/2 Inch NPS and Smaller): Hard copper tube, Type L; copper, solder-joint fittings; and soldered joints or copper pressure-seal-joint fittings; and pressure-sealed joints.

3.2 VALVE APPLICATIONS

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball valves.

3.3 PIPING INSTALLATION, GENERAL

- A. Refer to Division 23 Section "Basic Mechanical Piping Materials and Methods" for basic piping installation.
- B. Install piping level without pitch or with 0.25 percent slope downward toward drain when drains are indicated.

3.4 JOINT CONSTRUCTION

- A. Refer to Division 23 Section "Basic Mechanical Materials and Methods" for basic piping joint construction.
- B. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools and procedure recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.

3.5 VALVE INSTALLATION

- A. Sectional Valves: Install sectional valves close to main on each branch and riser serving plumbing fixtures or equipment, and where indicated. Use ball valves for piping 2-inch NPS and smaller.
- B. Shutoff Valves: Install shutoff valve on each water supply to equipment, on each supply to plumbing fixtures without supply stops, and where indicated. Use ball valves for piping 2-inch NPS and smaller.
- C. Drain Valves: Install hose-end drain valves for equipment, at base of each water riser, at low points in horizontal piping, and where required to drain water piping.

3.6 FIELD QUALITY CONTROL

- A. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- B. Test water distribution piping as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave interior piping uncovered and unconcealed new, altered, extended, or replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
 - 3. Cap and subject piping to static water pressure as required by the local Plumbing Code. If the local Plumbing Code does not stipulate testing requirements, cap and subject piping to static water pressure of 100 psig, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for 15 minutes. Leaks and loss in test pressure constitute defects that must be repaired.
 - 4. If testing is to be performed at temperatures below freezing, an air test may be performed in lieu of water testing if allowed by local plumbing code and approved by engineer.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.7 START-UP

- A. Fill water piping. Check components to determine that they are not air bound and that piping is full of water.
- B. Perform the following steps before putting into operation:
 - 1. Close drain valves, hydrants, and hose bibbs.

- 2. Open shutoff valves to fully open position.
- 3. Open throttling valves to proper setting.
- 4. Remove plugs used during testing of piping and plugs used for temporary sealing of piping during installation.
- 5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
- C. Check plumbing equipment and verify proper settings, adjustments, and operation. Do not operate water heaters before filling with water.

END OF SECTION 221116

SECTION 221316 - DRAINAGE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes sanitary drainage and vent piping inside building and to locations indicated.

1.3 SYSTEM PERFORMANCE REQUIREMENTS

- A. Provide components and installation capable of producing piping systems with following minimum working-pressure ratings, unless otherwise indicated:
 - 1. Soil, Waste and Vent Piping: 10-foot head of water.

1.4 SUBMITTALS

- A. Test Results and Reports: Specified in "Field Quality Control" Article.
- B. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

- A. Provide listing/approval stamp, label, or other marking on piping made to specified standards.
- B. Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

1.6 FIELD CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service in accordance with requirements indicated:
 - 1. Notify Owner no fewer than two weeks in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPES AND TUBES

- A. General: Applications of the following pipe and tube materials are indicated in Part 3 "Piping Applications" Article.
- B. Hub-and-Spigot, Cast-Iron Soil Pipe: ASTM A 74, Service and Extra Heavy classes. Include ASTM C 564 rubber gasket, with dimensions required for pipe class, for each hub.
- C. Hubless, Cast-Iron Soil Pipe: ASTM A 888 or CISPI 301.
- D. Hard Copper Tube: ASTM B 88, Types L and M, water tube, drawn temper.
- E. Hard Copper Tube: ASTM B 306, drainage tube, drawn temper.
- F. PVC Plastic Pipe: ASTM D 2665, solid wall, Schedule 40.

2.2 PIPE AND TUBE FITTINGS

- A. General: Applications of the following pipe and tube fitting materials are indicated in Part 3 "Piping Applications" Article.
- B. Threaded-Fitting, End Connections: ASME B1.20.1.
- C. Hub-and-Spigot, Cast-Iron, Soil-Pipe Fittings: ASTM A 74, Service and Extra Heavy classes, hub and spigot. Include ASTM C 564 rubber gasket, with dimensions required for pipe class, for each hub.
- D. Hubless, Cast-Iron, Soil-Pipe Fittings: CISPI 301.
- E. Copper, Solder-Joint Drainage Fittings: ASME B16.23 cast copper or ASME B16.29 wrought copper.
- F. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311 drain, waste, and vent pipe patterns.

2.3 JOINING MATERIALS

- A. Refer to Division 23 Section "Basic Mechanical Piping Materials and Methods" for commonly used joining materials.
- B. Solder: ASTM B 32, Alloy Sn95, Sn94, or E; lead free.
- C. Hubless, Cast-Iron, Soil-Piping Couplings: CISPI 310/NSF assembly of metal housing, corrosion-resistant fasteners, and ASTM C 564 rubber sleeve or gasket with integral, center pipe stop. Neoprene Couplings with stainless steel clamps.
- D. PVC: Solvent Welded fittings with primer-less type PVC cement listed for specific use.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Transition and special fittings with pressure ratings at least equal to piping pressure rating may be used in applications below, unless otherwise indicated.

- B. Aboveground, Sanitary Waste and Vent Piping: Use the following:
 - 1. 1-1/2 to 10-Inch NPS: Hubless, cast-iron soil pipe; hubless, cast-iron, soil-pipe fittings; and hubless, cast-iron, soil-piping couplings.
 - 2. 1-1/4 to 4-Inch NPS: Hard copper drainage tube; copper, solder-joint drainage fittings; and soldered joints.
 - 3. 1-1/4 to 12-Inch NPS: PVC plastic pipe, PVC socket fittings, and solvent-cemented joints. Do not install PVC piping in return air plenum.

3.2 PIPING INSTALLATION

- A. Refer to Division 23 Section "Basic Mechanical Piping Materials and Methods" for basic piping installation.
- B. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- C. Make changes in direction for drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fix-tures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not make change in direction of flow greater than 90 degrees. Use proper size of standard increasers and reducers if different sizes of piping are connected. Reducing size of drainage piping in direction of flow is prohibited.
- D. Install drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 - 1. Sanitary Drain: Unless otherwise indicated, 1/4" per foot downward in direction of flow
- E. Cast-Iron, Soil-Piping Joints: Make joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Compression Joints: Make with rubber gasket matching class of pipe and fittings.
 - 2. Hubless Joints: Make with rubber gasket and sleeve or clamp.
- F. PVC Piping Joints: Join drainage piping according to ASTM D 2665.
- G. Install indirect waste piping per local code requirements. Maintain code required air gaps.

3.3 FIELD QUALITY CONTROL

- A. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- B. Test drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedure, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.

- 3. Roughing-In Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10 feet of head. Water level must not drop from 15 minutes before inspection starts through completion of inspection. Inspect joints for leaks.
- 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
- 5. Repair leaks and defects using new materials and retest piping or portion thereof until satisfactory results are obtained.
- 6. Prepare reports for tests and required corrective action.

3.4 CLEANING AND PROTECTING

- A. Clean interior of piping system. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221316

SECTION 221319 - PLUMBING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes plumbing specialties for the following:
 - 1. Water distribution systems.

1.3 SYSTEM PERFORMANCE REQUIREMENTS

- A. Provide components and installation capable of producing piping systems with following minimum working-pressure ratings, unless otherwise indicated:
 - 1. Water Distribution Piping: 125 psig.

1.4 SUBMITTALS

- A. Product Data: For each plumbing specialty indicated. Include rated capacities of selected equipment and shipping, installed, and operating weights. Indicate materials, finishes, dimensions, required clearances, and methods of assembly of components; and piping and wiring connections for the following plumbing specialty products:
 - 1. Hose bibbs and hydrants.
- B. Maintenance Data: For specialties to include in the maintenance manuals. Include the following:
 - 1. Backflow preventers.
- C. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, dimensional requirements, and characteristics of plumbing specialties and are based on the specific types and models indicated. Other manufacturers' products with equal performance characteristics may be considered. Refer to Division 1 Section "Substitutions."
- Provide listing/approval stamp, label, or other marking on plumbing specialties made to specified standards.

- C. Listing and Labeling: Provide electrically operated plumbing specialties specified in this Section that are listed and labeled as defined in National Electrical Code. Article 100.
- D. Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hydrants:
 - a. Enpoco, Inc.
 - b. Josam Co.
 - c. Murdock, Inc.
 - d. Smith: Jay R. Smith Mfg. Co.
 - e. Tyler Pipe; Wade Div.
 - f. Watts Industries, Inc.; Ancon Drain Div.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Woodford Manufacturing Co.
 - i. Zurn Industries, Inc.; Hydromechanics Div.

2.2 HYDRANTS

A. See drawings for "PLUMBING SPECIALTIES SCHEDULE"

2.3 MISCELLANEOUS PIPING SPECIALTIES

- A. Roof Flashing Assemblies: Manufactured assembly made of 4-lb/sq. ft., 0.0625-inch- thick, lead flashing collar and skirt extending at least 8 inches from pipe with galvanized steel boot reinforcement, and counterflashing fitting.
- B. Air-Gap Fittings: ASME A112.1.2, cast iron or cast bronze, with fixed air gap, inlet for drain pipe or tube, and threaded or spigot outlet.

PART 3 - EXECUTION

3.1 PLUMBING SPECIALTY INSTALLATION

- A. General: Install plumbing specialty components, connections, and devices according to manufacturer's written instructions.
- B. Install individual stop valve in each water supply to plumbing specialties. Use ball valve if specific valve is not indicated. Install water-supply stop valves in accessible locations.
- C. Install flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Supply Runouts to Plumbing Specialties: Install hot- and cold-water-supply piping of sizes indicated, but not smaller than required by authorities having jurisdiction

3.3 START-UP

- A. Before startup, perform the following checks:
 - 1. System tests are complete.
 - 2. Damaged and defective specialties and accessories have been replaced or repaired.
 - 3. Clear space is provided for servicing specialties.
- B. Before operating systems, perform the following steps:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open general-duty valves to fully open position.
 - 3. Verify that drainage and vent piping are clear of obstructions. Flush with water until clear.
- C. Startup Procedures: Follow manufacturer's written instructions. If no procedures are prescribed by manufacturer, energize circuits for electrically operated units. Start and run units through complete sequence of operations.
- D. Adjust operation and correct deficiencies discovered during commissioning.

3.4 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. The Owner has contracted directly with the Commissioning Authority (CxA) for this project. All Contractors shall cooperate with the CxA to complete all required commissioning. Specification Section 019113 defines the Contractor's responsibilities with respect to the process. The Contractor shall review this section and shall include in their bids the work associated with the commissioning effort described.

1.2 SUMMARY

A. This Section includes general mechanical requirements and shall apply to all phases of the work specified, indicated on the drawings or required to provide for complete installation of all mechanical systems including fire protection systems, plumbing systems; and heating, ventilation, and air conditioning (HVAC) systems.

1.3 WARRANTIES

- A. All materials, workmanship and equipment shall be warranted against defects or against injury from proper and usual wear for a period of one year after the date of substantial completion. Any item which becomes defective within the warranty period shall be repaired or replaced, at no additional cost to the Owner.
- B. All manufacture's warranties shall run to the benefit of the Owner. No manufacturer's warranties shall be voided or impaired.
- C. Warranties shall include repair of faulty workmanship.

1.4 ALTERNATES

A. Alternates, if required, shall be as described in the "Alternates" section of this specification, as described on the proposal form of as indicated on the drawings.

1.5 INTERPRETATION OF DOCUMENTS

- A. Any questions regarding the meaning of any portion of the contract documents shall be submitted to the Architect/Engineer for interpretation. Definitive interpretations or clarification will be published by addenda or supplemental information. Verbal interpretation not issued by addendum or supplemental information shall not be considered part of the contract documents.
- B. The Architect/Engineer shall be the sole judge of interpretations of discrepancies within the contract documents.

C. If ambiguities should appear in the contract documents, the Contractor shall request clarification from the Architect/Engineer before proceeding with the work. If the Contractor fails to make such request, no excuse will thereafter be entertained for failure to carry out the work in a manner satisfactory to the Architect/Engineer. Should a conflict occur within the contract documents, the Contractor is deemed to have estimated the more expensive way of doing the work unless a written clarification from the Architect/Engineer was requested and obtained before submission of proposed methods or materials.

1.6 **DEFINITIONS ABREVIATIONS**

A. The following shall apply throughout the contract documents

1.	Code	All applicable national state and local codes
2.	Furnish	Supply and deliver to site ready for installation
3.	Indicated	Noted, scheduled or specified
4.	Provide	Furnish, install and connect complete and ready for final use by owner
5.	ADA	Americans with Disabilities Act
6.	ANSI	American National Standards Institute
7.	ARI	Air-Conditioning and Refrigeration Institute
8.	ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
9.	ASME	American Society of Mechanical Engineers
10.	ASTM	American Society for Testing and Materials
11.	HI	Hydraulic Institute
12.	NEC	National Electric Code (NFPA 70)
13.	NEMA	National Electrical Manufacturers Association
14.	NFPA	National Fire Protection Association

Sheet Metal and Air Conditioning Contractors' National Association 15. SMACNA

Underwriters Laboratories Inc. 16. UL

1.7 CODES AND STANDARDS

- A. All work shall be performed by competent craftsmen skilled in the trade involved and shall be done in a manner consistent with normal industry standards.
- B. All work shall conform to the currently adopted edition of the National Electric Code (NEC), International Building Code with local amendments, International Mechanical Code with local amendments, Uniform Plumbing Code with local amendments, 2012 International Energy Conservation Code with local amendments, and all other applicable state and local codes or standards.
- C. Where there is a conflict between the code and the contract documents, the code shall have precedence only then it is more stringent than the contract documents. Items that are allowed by the code but are less stringent than those specified shall not be substituted.

1.8 **PERMITS**

Contractor shall become familiar and comply with all requirements regarding permits, fees, licenses, etc. A. All permits, licenses, inspections and arrangements required for the work shall be obtained by Contractor's effort and expense. All utilities shall be installed in accordance with the local rules and regulations and all charges shall be paid by the Contractor.

1.9 **SUBMITTALS**

A. Division 01 section "Submittals" shall be adhered to if more stringent than this section.

B. Submittal Procedures

- 1. Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 - Email: Prepare submittals as PDF package, and transmit to Architect by sending via email.
 Include PDF transmittal form. Include information in email subject line as requested by Architect.

C. Shop Drawings

- Shop drawings include fabrication and installation drawings, diagrams, schedules of other data specifically prepared for the project. Include dimensions and notations showing compliance with specified standards.
- 2. Submit Product Data before Shop Drawings, and before or concurrent with Samples.

D. Product Data

- 1. If information must be specially prepared for submittal because standard published data are unsuitable for use, submit as Shop Drawings, not as Product Data.
- 2. Product data includes printed information, such as manufacture's installation instructions, catalog cuts, standard color charts, rough-in diagrams, wiring diagrams and performance curves.
- 3. Each copy shall clearly indicate conformance with specified capacities, characteristics, dimensions and details. Mark all equipment with same item number as used on drawings. Mark each copy to clearly indicate applicable products and options.
- 4. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
- 5. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams that show factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
- 6. Submit Product Data before Shop Drawings, and before or concurrent with Samples.

E. Samples

- 1. Samples are physical examples used to illustrate materials, equipment or workmanship.
- 2. Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other materials.
- F. Architect/Engineer will review or take appropriate action for submittals. Review is only to determine general conformance with design shown in contract documents.

- G. Architect/Engineer review of submittals shall not relieve contractor of responsibility for deviation from requirements of the contract documents or from errors or omissions within submittals.
- H. Deviations and Additional Information: On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested by Architect/Engineer on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.
- I. No portion of the work requiring submittals shall be commenced until the Architect/Engineer has reviewed the submittal.
- J. Electronic Floor Plan Drawings in AutoCAD format may be requested for use in preparation of shop drawings. Morrissey Engineering reserves the right to reject requests for electronic drawings. Submit written request to Morrissey Engineering or email request to info@morrisseyengineering.com. Indicate the project name, and floor plan sheets requested. The use of these drawings is intended solely for preparation of drawings required by this specification. Copyright law prohibits any other use. The user of the electronic files assumes full responsibility for the accuracy and scale of the drawings.
- K. See "Submittal Schedule" at the end of Section 230100 "General Requirements for Mechanical Systems."

1.10 OPERATION AND MAINTENANCE MANUALS

- A. Assemble (3) complete sets of operation and maintenance data indicating the operation and maintenance of each system, subsystem, and piece of equipment not part of a system. Include operation and maintenance data required in individual Specification Sections and as follows:
 - 1. Operation Data:
 - a. Emergency instructions and procedures.
 - b. System, subsystem, and equipment descriptions, including operating standards.
 - c. Operating procedures, including startup, shutdown, seasonal, and weekend operations.
 - d. Description of controls and sequence of operations.
 - e. Piping and wiring diagrams.

2. Maintenance Data:

- a. Manufacturer's information, including list of spare parts.
- b. Name, address, and telephone number of installer or supplier.
- c. Maintenance procedures.
- d. Maintenance and service schedules for preventive and routine maintenance.
- e. Maintenance record forms.
- f. Sources of spare parts and maintenance materials.
- g. Copies of maintenance service agreements.
- h. Copies of warranties and bonds.
- B. Organize operation and maintenance manuals into suitable sets of manageable size. Bind and index data in heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, with pocket inside the covers to receive folded oversized sheets. Identify each binder on front and spine with the printed title "OPERATION AND MAINTENANCE MANUAL," Project name, and subject matter of contents.
- C. Provide an electronic copy of the entire Operation and Maintenance Manual.

1.11 PROJECT RECORD DOCUMENTS

- A. Record Drawings: Maintain and submit one set of blue- or black-line white prints of Contract Drawings and Shop Drawings.
 - Mark Record Prints to show the actual installation where installation varies from that shown originally.
 - 2. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at the same location.
 - 3. Mark important additional information that was either shown schematically or omitted from original Drawings.
 - 4. Note Construction Change Directive numbers, Change Order numbers, alternate numbers, and similar identification where applicable.
 - 5. Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
- B. Record Specifications: Submit one copy of Project's Specifications, including addenda and contract modifications. Mark copy to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
- C. Record Product Data: Submit one copy of each Product Data submittal. Mark one set to indicate the actual product installation where installation varies substantially from that indicated in Product Data.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. All materials and equipment used in the construction of the project shall be new unused and undamaged unless otherwise specified. Materials and equipment shall be of latest design standards of manufacturer specified.
- B. Materials and equipment are limited by the requirements of the contract documents. Material and equipment shall be provided in accordance with the following:
 - 1. Basis of Design Products: Basis of Design Products are those products around which the project was designed in terms of capacity, performance, physical size and quality. Basis of Design Products shall be provided unless substitutions are made in accordance with this specification.
 - 2. Substitutions: Substitutions are product of manufacturers other than listed as Basis of Design. Substitutions shall meet each of the following requirements:
 - The product shall be manufactured by one of the acceptable manufacturers listed in the contract documents.
 - b. The product shall meet or exceed the requirements of the contract documents in terms of quality, performance, suitability, appearance and characteristics.
 - c. The contractor providing the substitution shall bear the total cost of all changes due to substitutions. These may include but are not limited to redesign costs and increased work by other contractors or the owner.
 - d. The Architect/Engineer shall be the sole judge of the suitability of the substation items.
- C. Verify installation details and requirements for materials and equipment furnished by others and installed under this contract.

PART 3 - EXECUTION

3.1 DEMONSTRATION AND TRAINING

- A. Instruction: Instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1. Provide instructors experienced in operation and maintenance procedures.
 - 2. Provide instruction at mutually agreed-on times. For equipment that requires seasonal operation, provide similar instruction at the start of each season.
 - 3. Schedule training with Owner and Architect/Engineer with at least seven days' advance notice.
- B. Program Structure. Include instruction for the following:
 - 1. System design and operational philosophy.
 - 2. Review of documentation.
 - 3. Operations.
 - 4. Adjustments.
 - 5. Troubleshooting.
 - 6. Maintenance.
 - 7. Safety.

3.2 STARTING AND ADJUSTING

- A. Start and test all equipment and operating components to confirm proper operation. Test and adjust all systems to achieve designed capacity and performance.
- B. Provide three (3) copies of all test report to the Architect/Engineer for review prior to date of substantial completion.
- C. All equipment and systems discrepancies shall be corrected prior to final acceptance.

MECHANICAL SUBMITTAL SCHEDULE Refer to individual specification sections for additional requirements and detail on each submittal.

Section	Section Name	Product Data	Shop Dwgs	Test Reports / Quality Control	Warranty	Extra Materials	O&M Data	Record Docs	Demonstration / Training
019133	Commissioning			X				X	
211000	Water Based Fire Suppression System	X	X						
220523	Valves for Plumbing	X					X		
220720	Pipe Insulation for Plumbing	X							
221116	Water Distribution Piping			X				X	
221316	221316 Drainage and Vent Piping	X		X				X	
221319	Plumbing Specialties	X					X		X
230100	General Requirements for Mechanical Systems	X	X		X		X	X	X
230500	Basic Mechanical Materials and Methods	X	X				X		
230505	Basic Mechanical Piping Materials and Methods	X					X		
230523	Valves for HVAC	X					X		
230593	Testing, Adjusting, and Balancing			X					
230700	Duct Insulation	X							
230720	Pipe Insulation for HVAC	X							
230900	HVAC Instrumentation and Controls	X	X	X	X		X	X	X
230993	Sequence of Operation for HVAC Controls		X	X			X	X	X
231123	Fuel Gas Piping	X		X			X	X	
232113	Hydronic Piping	X		X			X	X	
232123	Hydronic Pumps	X	X				X	X	X
233113	Metal Ducts and Accessories	X	X		X		X	X	
237313	Modular Outdoor Air Handling Units	X	X	X	X	X	X	X	X
237313	Rooftop Air Handling Units	X	X	X	X	X	X	X	X

END OF SECTION 230100

230100

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following basic mechanical materials and methods and shall apply to all phases of the work specified, indicated on the drawings or required to provide for complete installation of mechanical systems.
 - 1. Indenting Devices and Labels
 - 2. Sealants
 - 3. Access Doors
 - 4. Electrical Requirements
 - 5. Motors
 - 6. Mechanical Equipment Installation
 - 7. Labeling and Identifying
 - 8. Demolition
 - 9. Work in Existing Buildings
 - 10. Construction Layout
 - 11. Data and Measurements

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawl spaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors, or subject to ambient outdoor temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants, but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.4 SUBMITTALS

A. Product Data: For sealants and identification materials and devices.

- B. Shop Drawings: Detail fabrication and installation for metal and wood supports and anchorage for mechanical materials and equipment.
- C. See "Submittal Schedule" at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

- A. Comply with ASME A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.
- B. Equipment Selection: Equipment of higher electrical characteristics, physical dimensions, capacities, and ratings may be furnished provided such proposed equipment is approved in writing and connecting mechanical and electrical services, circuit breakers, conduit, motors, bases, and equipment spaces are increased. Additional costs shall be approved in advance by appropriate Contract Modification for these increases. If minimum energy ratings or efficiencies of equipment are specified, equipment must meet design and commissioning requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Each contractor shall make provisions for delivery and safe storage of materials. Materials shall be delivered in a timely manner to expedite the work.
- B. Protect stored piping, supplies and equipment from cold, moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

1.7 COORDINATION

- A. Coordinate mechanical equipment installation with other building components.
- B. Arrange for pipe, duct and equipment spaces, chases, slots, and openings in building structure during progress of construction to allow for mechanical installations.
- C. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components, as they are constructed.
- D. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.
- E. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.
- F. Coordinate requirements for access panels and doors if mechanical items requiring access are concealed behind finished surfaces.
- G. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.
- H. Motors, equipment, controls, etc. shall be furnished, mounted and connected according to the following schedule unless otherwise noted (E =Electrical Contractor, M = Mechanical Contractor):

I.

Ite	m	Furnished By	Set in place or mounted by	Power wiring and connection by	Control Wiring and connection by
1)	Equipment Motors	M	M	Е	M
2)	Disconnect switches, thermal over-				
	load switches, manual operating switches				
	a) Furnished as part of factory wired mechanical equipment	M	M	E	
	b) Loose mounted	E	E	Е	
3)	Transformers				
	a) Serving 120 Volt and higher loads	E	E	E	
	b) Serving 24 Volt control power	M(1)	M	Е	M
4)	Contactors	E	E	E	E
5)	Line voltage thermostats and time	E	– E	E	E
- /	clocks.				
6)	Low voltage controls and thermostats	M	M	M	M(2)
7)	Motorized control valves, damper motors, solenoid valves, etc.				. ,
	a) Line Voltage	M	M	E	M
	b) Low Voltage	M	M	M	M
8)	Factory pre-wired control/power pan-	M	M	E	M(3)
0)	els including remote sensing devices	111	111	L	111(3)
9)	Fire Smoke Dampers				
- /	a) At air handling unit (24 Volt)	M	M	M	M
	b) In space (120 Volt)	M	M	Е	E(4)
10)	Fire and smoke detectors including	E	E	E	E(5)
,	relays for fan shutdown				

J. Notes:

- 1. When control power is not available, mechanical contractor shall provide control transformers as required to power all valves, dampers, etc.
- 2. Conduit rough-in for thermostats by electrical contractor where indicated on plans.
- 3. Remote condensing units and heat pumps control wiring including wiring of remote sensors by mechanical. Control circuit feeders by mechanical unless shown otherwise.
- 4. Smoke dampers will be specified as 115 volt (verify) with wiring by Electrical Contractor and control from the fire alarm panel. Smoke detectors furnished by electrical contractor are required to make dampers operate.
- 5. Wiring from alarm contacts to alarm system by Electrical; control function wiring by Mechanical.

PART 2 - PRODUCTS

2.1 IDENTIFYING DEVICES AND LABELS

- A. General: Manufacturer's standard products of categories and types required for each application as referenced in other Division 23 Sections. If more than one type is specified for application, selection is Installer's option, but provide one selection for each product category.
- B. Equipment Nameplates: Metal nameplate with operational data engraved or stamped; permanently fastened to equipment.

- 1. Data: Manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and similar essential data.
- 2. Location: Accessible and visible location.
- C. Engraved Plastic-Laminate Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated.
 - 1. Fabricate in sizes required for message.
 - 2. Engraved with engraver's standard letter style, of sizes and with wording to match equipment identification.
- D. Fasteners: Self-tapping stainless-steel screws or contact-type permanent adhesive.
- E. Valve Tags: 19 gauge, 1-1/2" diameter, polished brass, stamped or engraved 1/4" high piping system abbreviation in and 1/2" high sequenced valve numbers.
 - 1. Valve tag fastener: Solid brass wire link or beaded chain, or 'S'-hook or size required for proper attachment of tags to valves.
- F. Snap-on Plastic Pipe Markers: Manufacturer's standard preprinted, semirigid, snap on, color-coded, complying with ASME A13.1.
- G. Pressure-Sensitive Pipe Markers: Manufacturer's standard preprinted, permanent adhesive, color-coded, pressure-sensitive vinyl, complying with ASME A13.1.
- H. Lettering and Graphics: Coordinate names, abbreviations, and other designations used in mechanical identification, with corresponding designations indicated. Use numbers, lettering, and wording indicated for proper identification and operation/maintenance of mechanical systems and equipment.

2.2 SEALANTS

- A. Polyurethane Sealant: Single component, chemical curing, non-staining, non-bleeding, capable of continuous water immersion, non-sagging for application in vertical and horizontal joints. Color as selected by architect.
- B. Accessories: Primer, joint cleaner, joint backing and bond breaker as recommended by sealant manufacturer to suit application.
- C. Firestopping Materials: Provide firestopping material to maintain required rating of all fire-resistive assemblies according to requirements of "Firestopping" section of this specification.

2.3 ACCESS DOORS

- A. Prime Coated 14 gauge steel, flush, with screw driver operated cam lock. Frame to accommodate construction type; size as indicated.
- B. Architectural access panel with concealed hardware and gypsum board inlay. Provide with concealed frame, latch, and hinge. Panel shall be Access Panel Solutions Inc. Bauco Plus II or approved equal.

2.4 ELECTRICAL REQUIREMENTS

A. Compliance for HVAC Equipment

- 1. Comply with applicable requirements of the National Electric Code (NFPA 70)
- 2. Provide equipment and accessories that are listed and labeled as defined in NFPA 70
- 3. Comply with applicable requirements of Underwriters Laboratory (UL)
- 4. Comply with applicable requirements of NEMA standards

B. Electrical Wire

- 1. Wiring material shall be in accordance with the latest version of the National Electric Code (NFPA 70) and all applicable local codes and carry the UL label where applicable.
- 2. All exposed wiring in return air plenums shall be rate cable for fire and smoke spread.

2.5 MOTORS

A. BASIC MOTOR REQUIREMENTS

- 1. Motors ¾ HP and Larger shall be polyphase when available from the electrical service. Motors Smaller than ¾ HP shall be single phase unless otherwise indicated.
- 2. Frequency Rating shall be 60 Hz. Voltage Rating is determined by voltage of circuit to which motor is connected.
- 3. Service Factor: According to NEMA MG 1, unless otherwise indicated.
- 4. Capacity and Torque Characteristics: Rated for continuous duty and sufficient to start, accelerate, and operate connected loads at designated speeds, in indicated environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
- 5. Enclosure: Open dripproof, unless otherwise indicated.

B. POLYPHASE MOTORS

1. General

- Design Characteristics: NEMA MG 1, Design B, Energy-Efficient Design, unless otherwise indicated.
- b. Stator: Copper windings, unless otherwise indicated. Multispeed motors have separate winding for each speed.
- c. Rotor: Squirrel cage, unless otherwise indicated.
- d. Bearings: Double-shielded, prelubricated ball bearings suitable for radial and thrust loading.
- e. Temperature Rise: Match insulation rating, unless otherwise indicated.
- f. Insulation: Class F, unless otherwise indicated.
- 2. Motors Used with Reduced-Inrush Controllers: Match wiring connection requirements for indicated controller, with required motor leads brought to motor terminal box to suit control method.
- 3. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer. Inverter rated motors used in conjunction with variable speed drives shall be equipped with a shaft grounding ring. Grounding ring shall be Helwig Carbon Bearing Protector, installed per manufacturer requirements. Grounding ring may be epoxy mounted if manufacturer's recommended epoxy adhesive is used.
- 4. Rugged-Duty Motors: Where indicated, motors are totally enclosed with 1.25 minimum service factor, greased bearings, integral condensate drains, and capped relief vents. Windings are insulated with nonhygroscopic material. External finish is chemical-resistant paint over corrosion-resistant primer.

C. SINGLE-PHASE MOTORS

- 1. Permanent-split capacitor, Split-phase start, capacitor run or capacitor start, capacitor run as indicated or selected by manufacturer, to suit starting torque and other requirements of specific motor application.
- 2. Thermal Protection: Where indicated or required, internal protection automatically opens power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal protection device automatically resets when motor temperature returns to normal range, unless otherwise indicated.
- 3. Bearings: Ball-bearing type for belt-connected motors and other motors with high radial forces on motor shaft. Sealed, prelubricated sleeve bearings for other single-phase motors.

D. ELECTRONICALLY COMMUTATED MOTORS (ECM)

- 1. Permanent magnet type motor with near-zero rotor losses designed for synchronous rotation.
- 2. Brushless DC motor controlled by an integrated controller/inverter that operates the wound stator and senses rotor position to electrically commutate the stator as indicated or selected by manufacturer, to suit starting torque and other requirements of specific motor application. Coordinate input signal for speed with specific application.
- 3. Motor shall be designed to maintain a minimum 70 percent efficiency over the entire operating range.
- 4. Thermal Protection: Where indicated or required, internal protection automatically opens power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal protection device automatically resets when motor temperature returns to normal range, unless otherwise indicated.
- 5. Bearings: Sealed, pre-lubricated ball bearing type for poly-phase or single-phase motors.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Install equipment to provide maximum possible headroom, if mounting heights are not indicated.
- B. Install equipment according to approved submittal data. Portions of the Work are shown only in diagrammatic form. Refer conflicts to Architect.
- C. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- D. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- E. Install equipment giving right of way to piping installed at required slope.

3.2 POSITION OF DEVICES

A. Devices shall be installed at the height indicated below unless otherwise noted. All heights of outlets are measured from finished floor to centerline of device. Locate devices mounted on finish surfaces with regards to furring, trim, etc. Heights may be adjusted as necessary to clear wall mounted cabinets, electrical devices, etc. Where installed in masonry walls, mounting heights may be adjusted to correspond to block coursing. Where thermostats are located adjacent to light switches, match light switch mounting height. In no case shall devices requiring wheelchair accessibility be mounted above 48".

Thermostats (where located adjacent to light switches, match light switch height)
 Space Sensors (where located adjacent to light switches, match light switch height)
 Temperature Control Panels (not requiring occupant interface)
 60"

3.3 LABELING AND IDENTIFYING

- A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.
 - 1. Plastic markers, with application systems. Install on insulation segment if required for hot, uninsulated piping.
 - 2. Locate pipe markers as follows if piping is exposed in finished spaces, machine rooms, and accessible maintenance spaces, such as shafts, tunnels, plenums, and exterior nonconcealed locations:
 - a. Near each valve and control device.
 - b. Near each branch, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, if flow pattern is not obvious.
 - c. Near locations if pipes pass through walls, floors, ceilings, or enter nonaccessible enclosures.
 - d. At access doors, manholes, and similar access points that permit view of concealed piping.
 - e. Near major equipment items and other points of origination and termination.
 - f. Spaced at maximum of 50-foot intervals along each run. Reduce intervals to 25 feet in congested areas of piping and equipment.
 - g. On piping above removable acoustical ceilings, except omit intermediately spaced markers.
- B. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of mechanical equipment.
- C. Valve Tags:
 - 1. Install valve tag at all valves in piping systems listed below
 - a. Domestic water (excluding individual fixture isolation valves)
 - b. Heating water piping
 - 2. Provide reproducible set of drawings indicating all valve locations.
- D. Label duct access doors at fire and smoke damper locations per NFPA 90A.
- E. Adjusting: Relocate identifying devices as necessary for unobstructed view in finished construction.

3.4 FIRESTOPPING

A. Apply firestopping to all duct and pipe penetrations of fire-rated floor and wall assemblies to achieve fire-resistance rating of the assembly.

3.5 DEMOLITION

A. Definitions

1. Remove: Detach items from existing construction and legally dispose of off-site unless indicated to be removed and salvaged or removed and reinstalled.

- Remove and Salvage: Detach items from existing construction, in a manner to prevent damage, and deliver to Owner as indicated.
- 3. Remove and Reinstall: Detach items from existing construction, in a manner to prevent damage; prepare for reuse; and reinstall where indicated.
- 4. Existing to Remain: Existing items of construction that are not to be removed.

B. Materials of Ownership

1. Unless otherwise indicated, demolition waste becomes property of Contractor.

C. Utility Services and Building Systems

- 1. Disconnect, demolish, and remove Work specified in Division 21, 22, and 23 Sections.
- 2. Refrigerant: Before starting demolition, remove refrigerant from mechanical equipment in accordance with 40 CFR 82 and regulations of authorities having jurisdiction.
- 3. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location and cleaned and reinstalled in their original locations after selective demolition operations are complete.
- 4. Existing Services/Systems to Remain: Maintain utilities and building systems and equipment to remain and protect against damage during selective demolition operations.
 - a. Maintain fire-protection facilities in service during selective demolition operations.
- 5. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utilities and building systems serving areas to be selectively demolished.
 - a. Owner will arrange to shut off indicated utilities when requested by Contractor.
 - b. Arrange to shut off utilities with utility companies.
 - c. If disconnection of utilities and building systems will affect adjacent occupied parts of the building, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to those parts of the building.
 - d. Demolish and remove existing building systems, equipment, and components indicated on Drawings to be removed.
 - 1) Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2) Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 - 3) Equipment to Be Removed: Disconnect and cap services and remove equipment and components.
- 6. Abandon existing building systems, equipment, and components indicated on Drawings to be abandoned in place.
 - a. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material and leave in place. Cut and remove underground pipe a minimum of 2 inches beyond face of adjacent construction. Cap and patch surface to match existing finish.
 - b. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork and insulation and leave in place.
- 7. Remove and reinstall/salvage existing building systems, equipment, and components indicated on drawings to be removed and reinstalled or removed and salvaged:

- a. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment and components; when appropriate, reinstall, reconnect, and make equipment operational.
- b. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and components and deliver to Owner.
- 8. If any mechanical piping, ductwork, insulation, or equipment not designated for demolition is damaged or disturbed, remove damaged portions and install new products of equal capacity and quality.
- D. Accessible Work: Remove indicated exposed pipe and ductwork in its entirety.
- E. Removal: Remove indicated equipment from Project site.
- F. Temporary Disconnection: Remove, store, clean, reinstall, reconnect, and make operational equipment indicated for relocation.
- G. Where wall mounted sensors, thermostats, panels, equipment, or similar are demolished, all resultant holes shall be filled and patched and the wall shall be painted to match adjacent construction. This includes associated hangers, covers, and accessories

3.6 WORK IN EXISTING BUILDINGS

- A. Full Owner Occupancy: The Owner will occupy the site and existing building during the construction period. Cooperate with the Owner to minimize conflicts with the Owner's operations.
- B. Partial Owner Occupancy: The Owner may occupy completed areas of the building before Substantial Completion. Cooperate with the Owner to minimize conflicts with the Owner's operations.
- C. Schedule all work in advance with the owner. Do not proceed with work without the Owner's written approval.
- D. Notify Owner of noisy operations and schedule in advance.
- E. The Owner shall have the right to direct work to secure safe and proper progress and quality of work.
- F. Do not interrupt utilities without Owner's written approval of time and duration. Interruptions shall be minimum required for completion of work.
- G. The existing fire alarm system shall remain functional throughout the project. The Owner and the Fire Marshall shall approve required outages.
- H. The Owner shall be notified before starting welding or cutting. Fire extinguishers shall be immediately accessible when welding or cutting with an open flame or arc. Welding or cutting with an open flame or arc shall be stopped not less than one hour before leaving the premises.
- I. Existing mechanical items that interfere with the proper installation new work shall be removed or relocated as required or as directed by the Architect/Engineer.

3.7 CUTTING AND PATCHING

A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces necessary for installations. Perform cutting by skilled mechanics of trades involved.

B. Repair cut surfaces to match adjacent surfaces.

3.8 CONSTRUCTION LAYOUT

- A. Layout work in advance of installation using data and measurements from the site, the appropriate architectural and structural drawings and shop drawings.
- B. Confirm adequate clearance for installation, operation, maintenance and code required clearance including items installed by other contractors.
- C. If layout to provide clearance is not possible, promptly notify Architect/Engineer for clarification.

3.9 DATA AND MEASUREMENTS

- A. The data given herein and on the drawings is as accurate as could be secured. The existence and location of construction as indicated is not guaranteed. Before beginning work investigate and verify the existence and location of items affecting work. Obtain exact locations, measurements, levels, etc., at the site and adapt work to actual conditions.
- B. Only site measurements may be utilized in calculations. Mechanical and electrical drawings are diagrammatic or schematic.

3.10 PAINTING AND FINISHING

- A. Refer to individual sections for paint materials, surface preparation, and application of paint.
- B. Do not paint piping specialties with factory-applied finish.
- C. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.11 HANGERS AND SUPPORTS

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.
- B. Field Welding: Comply with applicable codes and standards.

3.12 ACCESS

- A. Provide access to all equipment, valves, controls, etc. as required for operation, repair and maintenance.
- B. Access doors shall be provided when access through ceilings, chases, etc. is not provided by others.

3.13 ELECTRICAL WIRING

A. Install all electrical wiring in accordance with the National Electric Code and Division 26 of this specification.

- B. All line voltage and low voltage wire shall be installed in metal raceways.
- C. All low voltage wire in shall be installed in metal raceways.

END OF SECTION 230500

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following basic mechanical materials and methods to complement other Division 22 and 23 Sections.
 - 1. Piping materials and installation instructions common to mechanical piping systems.
 - 2. Dielectric fittings.
 - 3. Flexible connectors.
 - 4. Mechanical sleeve seals.
 - 5. Escutcheons.
 - 6. Pipe hangers and supports
 - 7. Thermal Hanger Shield Inserts
 - 8. Thermometers
 - 9. Pressure Gages
 - 10. Test Plugs
 - 11. Meters
- B. Pipe and pipe fitting materials are specified in Division 23 piping system Sections.

1.3 DEFINITIONS

- A. MSS: Manufacturer's Standardization Society for the Valve and Fittings Industry.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design support systems for piping to support multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.

1.5 SUBMITTALS

- A. Product Data: For dielectric fittings, mechanical sleeve seals, and each type of pipe hanger, channel support system component, and thermal-hanger shield insert indicated. Include scale range, ratings, and calibrated performance curves for each meter, gage, fitting, specialty, and accessory specified.
- B. Maintenance Data: For meters and gages to include in maintenance manuals. Submit valve schedules to include in maintenance manuals for each piping system. Valve schedule shall indicate valve number, piping system and location of valve.

C. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.6 QUALITY ASSURANCE

A. Welders shall be qualified in accordance with applicable codes. Welding procedures and testing shall comply with ANSI B31.10 "Standard for Pressure Piping. Power Piping" and AWS Welding Handbook.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Dielectric Unions, Couplings, Flanges:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Co.
 - c. Eclipse, Inc.; Rockford-Eclipse Div.
 - d. Epco Sales Inc.
 - e. Hart Industries International, Inc.
 - f. Watts Industries, Inc.; Water Products Div.
 - g. Zurn Industries, Inc.; Wilkins Div.
 - 2. Flexible Connectors:
 - a. Nexus Valve
 - b. Metraflex
 - c. Hays Fluid Controls
 - d. Flexicraft Industries
 - e. Pro Hydronic Specialties
 - f. Flex Weld Inc
 - 3. Mechanical Sleeve Seals:
 - a. Calpico, Inc.
 - b. Metraflex Co.
 - c. Thunderline/Link-Seal.
 - 4. Pipe Hangers and Supports:
 - a. AAA Technology and Specialties Co., Inc.
 - b. Anvil
 - c. B-Line Systems, Inc. by Eaton
 - d. Carpenter & Patterson, Inc.
 - e. Grinnell Corp. B-Line Systems, Inc.
 - f. Grinnell Corp.; Power-Strut Unit.
 - g. GS Metals Corp.
 - h. Michigan Hanger Co., Inc.; O-Strut Div.
 - i. National Pipe Hanger Corp.
 - j. Thomas & Betts Corp.
 - k. Unistrut Corp.

- l. Wesanco, Inc.
- m. Thermal-Hanger Shield Inserts

5. Thermometers:

- a. AMETEK, Inc.; U.S. Gauge Div
- b. Dresser Industries, Inc.; Instrument Div.; Ashcroft Commercial Sales Operation.
- c. Dresser Industries, Inc.; Instrument Div.; Weksler Instruments Operating Unit.
- d. Ernst Gage Co.
- e. Marshalltown Instruments
- f. Miljoc Corporation
- g. Noshok, Inc.
- h. Reotemp Instrument Corp.
- i. Tel-Tru Manufacturing Co., Inc.
- j. Trerice: H. O. Trerice Co.
- k. Weiss Instruments, Inc.
- 1. Winter's Thermogauges, Inc.

6. Pressure Gages:

- a. AMETEK, Inc.; U.S. Gauge Div.
- b. Dresser Industries, Inc.; Instrument Div.; Ashcroft Commercial Sales Operation.
- c. Dresser Industries, Inc.; Instrument Div.; Weksler Instruments Operating Unit.
- d. Ernst Gage Co.
- e. Marsh Bellofram.
- f. Miljoco Corporation
- g. Noshok, Inc.
- h. Trerice: H. O. Trerice Co.
- i. Weiss Instruments, Inc.
- j. WIKA Instruments Corp.
- k. Winter's Thermogauges, Inc.

7. Test Plugs:

- a. Flow Design, Inc.
- b. MG Piping Products Co.
- c. Miljoco Corporation
- d. National Meter.
- e. Peterson Equipment Co., Inc.
- f. Sisco Manufacturing Co.
- g. Trerice: H. O. Trerice Co.
- h. Watts Industries, Inc.; Water Products Div.

2.2 PIPE AND PIPE FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness, unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32.
 - 1. Alloy Sn95 or Alloy Sn94: Approximately 95 percent tin and 5 percent silver, with 0.10 percent lead content.
 - 2. Alloy E: Approximately 95 percent tin and 5 percent copper, with 0.10 percent maximum lead content.
 - 3. Alloy HA: Tin-antimony-silver-copper zinc, with 0.10 percent maximum lead content.
 - 4. Alloy HB: Tin-antimony-silver-copper nickel, with 0.10 percent maximum lead content.
 - 5. Alloy Sb5: 95 percent tin and 5 percent antimony, with 0.20 percent maximum lead content.
- E. Brazing Filler Metals: AWS A5.8.
 - 1. BCuP Series: Copper-phosphorus alloys.
 - 2. BAg1: Silver alloy.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements: Manufacturer's standard solvent cements for PVC Piping. ASTM D 2564. Include primer according to ASTM F 656.
- H. Flanged, Ductile-Iron Pipe Gasket, Bolts, and Nuts: AWWA C110, rubber gasket, carbon-steel bolts and nuts.
- I. Couplings: Iron-body sleeve assembly, fabricated to match OD of plain-end, pressure pipes.
 - 1. Sleeve: ASTM A 126, Class B, gray iron.
 - 2. Followers: ASTM A 47 malleable iron or ASTM A 536 ductile iron.
 - 3. Gaskets: Rubber.
 - 4. Bolts and Nuts: AWWA C111.
 - 5. Finish: Enamel paint.

2.4 DIELECTRIC FITTINGS

- A. General: Assembly or fitting with insulating material isolating joined dissimilar metals, to prevent galvanic action and stop corrosion.
- B. Description: Assembly or fitting of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- C. Insulating Material: Suitable for system fluid, pressure, and temperature.

- D. Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
- E. Dielectric Unions:
 - 1. Standard: ASSE 1079.
 - 2. Pressure Rating: 125 psig minimum at 180 deg F.
 - 3. End Connections: Solder-joint copper alloy and threaded ferrous.
- F. Dielectric Nipples:
 - 1. Standard: IAPMO PS 66.
 - 2. Electroplated steel nipple, complying with ASTM F 1545.
 - 3. Pressure Rating: 300 psig at 225 deg F.
 - 4. End Connections: Male threaded or grooved.
- G. Lining: Inert and noncorrosive, propylene.

2.5 MECHANICAL SLEEVE SEALS

A. Description: Modular design, with interlocking rubber links shaped to continuously fill annular space between pipe and sleeve. Include connecting bolts and pressure plates.

2.6 PIPING SPECIALTIES

- A. Sleeves: The following materials are for wall, floor, slab, and roof penetrations:
 - 1. Steel Sheet Metal: 0.0239-inch minimum thickness, galvanized, round tube closed with welded longitudinal joint.
 - 2. Steel Pipe: ASTM A 53, Type E, Grade A, Schedule 40, galvanized, plain ends.
 - 3. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
 - 4. PVC: Manufactured, permanent, with nailing flange for attaching to wooden forms.
 - 5. PVC Pipe: ASTM D 1785, Schedule 40.
- B. Escutcheons: Manufactured wall, ceiling, and floor plates; deep-pattern type if required to conceal protruding fittings and sleeves.
 - 1. ID: Closely fit around pipe, tube, and insulation of insulated piping.
 - 2. OD: Completely cover opening.
 - 3. Stamped Steel: One piece, with set screw, spring clips, concealed hinge and chrome-plated finish.

2.7 PIPE HANGERS AND SUPPORTS

- A. Pipe Hangers, Supports, and Components: factory-fabricated components.
 - 1. Galvanized, Metallic Coatings: For piping and equipment that will not have field-applied finish.
 - 2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- B. Channel Support Systems: MFMA-2, factory-fabricated components for field assembly.
 - 1. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.

2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.

2.8 THERMAL-HANGER SHIELD INSERTS

- A. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength and vapor barrier.
- B. Insulation-Insert Material for Hot Piping: Water-repellent-treated, ASTM C533, Type I calcium silicate with 100-psi, ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength.
- C. Insulation-Insert Material for Refrigerant Piping (and hydronic piping insulated with EPDM or neoprene insulation): Polymeric core with surrounding EPDM foam rubber insulation and weatherproof outer membrane or PET core with neoprene insulation and PVC foil cladding.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe. Top half shall be standard pipe insulation.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.9 MISCELLANEOUS PIPE SUPPORTING MATERIALS

- A. Powder-Actuated Drive-Pin Fasteners: Powder-actuated-type, drive-pin attachments with pull-out and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Anchor Fasteners: Insert-type attachments with pull-out and shear capacities appropriate for supported loads and building materials where used.
- C. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars, black and galvanized.
- D. Grout: ASTM C 1107, Grade B, factory-mixed and -packaged, nonshrink and nonmetallic, dry, hydrau-lic-cement grout.

2.10 THERMOMETERS, GENERAL

- A. Scale Range: Temperature ranges for services listed are as follows:
 - 1. Chilled Water: 0 to 100 deg F, with 1-degree scale divisions.
 - 2. Heating Hot Water: 0 to 250 deg F, with 2-degree scale divisions.
- B. Accuracy: Plus or minus 1 percent of range span or plus or minus one scale division to maximum of 1.5 percent of range span.

2.11 LIQUID-IN-GLASS THERMOMETERS

A. Case: Die-cast aluminum with hard powder-coat finish, acrylic front, 9 inches long.

- B. Adjustable Joint: Finish to match case, 180-degree adjustment in vertical plane, 360-degree adjustment in horizontal plane, with locking device.
- C. Tube: Blue reading, organic-liquid filled with magnifying lens.
- D. Scale: Satin-faced nonreflective aluminum with permanently etched markings or white finished aluminum with black markings.
- E. Stem: Die-cast aluminum for separable socket; of length to suit installation.

2.12 SEPARABLE SOCKETS (THERMOWELLS)

- A. Description: Fitting with protective socket for installation in threaded pipe fitting to hold fixed thermometer stem.
 - 1. Material: to match piping.
 - 2. Extension-Neck Length: Nominal thickness of 2 inches, but not less than thickness of insulation. Omit extension neck for sockets for piping not insulated.
 - 3. Insertion Length: To extend to one-third of diameter of pipe or 2 inches into pipe.

2.13 PRESSURE GAGES

- A. Description: ASME B40.1, phosphor-bronze bourdon-tube type with bottom connection; dry type, unless liquid-filled-case type is indicated.
- B. Case: Stainless steel with 4-1/2-inch diameter, clear acrylic lens.
- C. Connector: Brass, NPS 1/4.
- D. Scale: White-coated aluminum with permanently etched markings or white finished aluminum with black markings.
- E. Accuracy: Grade 1A, plus or minus 1 percent of full scale.
- F. Range: Comply with the following:
 - 1. Vacuum: 30 inches Hg of vacuum to 15 psig of pressure.
 - 2. Fluids under Pressure: Two times the operating pressure.
- G. Gage Fitting Valves: NPS 1/4 brass or stainless-steel needle type.

2.14 TEST PLUGS

- A. Description: Brass-body test plug in NPS 1/2 fitting.
- B. Body: Length as required to extend beyond insulation.
- C. Pressure Rating: 500 psig minimum.
- D. Core Inserts: Two self-sealing valves, suitable for inserting 1/8-inch OD probe from dial-type thermometer or pressure gage adapter with probe.

- E. Core Material for Air and Water: Nordel, good up to 350 deg F.
- F. Core material for Natural Gas: Neoprene, good up to 200 deg F.
- G. Test-Plug Cap: Gasketed and threaded cap, of same material as plug.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. General: Install piping as described below, unless piping Sections specify otherwise. Individual Division 22 and 23] piping Sections specify unique piping installation requirements.
- B. General Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
- C. Install piping at indicated slope.
- D. Install components with pressure rating equal to or greater than system operating pressure.
- E. Install piping in concealed interior and exterior locations, except in equipment rooms and service areas.
- F. Install piping free of sags and bends.
- G. Install exposed interior and exterior piping at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.
- H. Install piping tight to slabs, beams, joists, columns, walls, and other building elements. Allow sufficient space above removable ceiling panels to allow for ceiling panel removal.
- I. Install piping to allow application of insulation plus 1-inch clearance around insulation.
- J. Locate groups of pipes parallel to each other, spaced to permit valve servicing.
- K. Install fittings for changes in direction and branch connections.
- L. Install couplings according to manufacturer's written instructions.
- M. Install pipe escutcheons for pipe penetrations of concrete and masonry walls, wall board partitions, and suspended ceilings.
- N. Install sleeves for pipes passing through concrete and masonry walls, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Build sleeves into new walls and slabs as work progresses.
 - 3. Install sleeves large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:

- O. Aboveground, Exterior-Wall, Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeve for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestopping materials
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
- S. Piping Joint Construction: Join pipe and fittings as follows and as specifically required in individual piping specification Sections:
 - 1. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - 2. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
 - 3. Soldered Joints: Construct joints according to AWS's "Soldering Manual," Chapter "The Soldering of Pipe and Tube"; or CDA's "Copper Tube Handbook."
 - 4. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 5. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - Welded Joints: Construct joints according to AWS D10.12, "Recommended Practices and Procedures for Welding Low Carbon Steel Pipe," using qualified processes and welding operators according to "Quality Assurance" Article.
 - 7. Flanged Joints: Align flange surfaces parallel. Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly using torque wrench.
- T. Piping Connections: Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping 2-inch NPS and smaller, adjacent to each valve and at final connection to each piece of equipment with 2-inch NPS or smaller threaded pipe connection.
 - 2. Install flanges, in piping 2-1/2-inch NPS and larger, adjacent to flanged valves and at final connection to each piece of equipment with flanged pipe connection.
 - 3. Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.2 HANGER AND SUPPORT APPLICATIONS

- A. Comply with MSS SP-69 for pipe hanger selections and applications.
- B. Comply with MSS SP-89 for fabrication and installation procedures.
- C. Horizontal-Piping Hangers and Supports: Use swivel ring or clelvis type hangers.
- D. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
- 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 HANGER AND SUPPORT INSTALLATION

- A. Pipe Hanger and Support Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Channel Support System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled channel systems. Field assemble and install according to manufacturer's written instructions.
- C. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, and expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- E. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- F. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- G. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9, "Building Services Piping," is not exceeded.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.

Project No: 25336

Morrissey Engineering Inc.

- 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- J. Support vertical piping and tubing at base and at each floor.
- K. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 - 1. 3/4-Inch NPS and Smaller: Maximum horizontal spacing, 60 inches with 3/8-inch minimum rod diameter; maximum vertical spacing, 10 feet.
 - 2. 1-Inch NPS: Maximum horizontal spacing, 72 inches with 3/8-inch minimum rod diameter; maximum vertical spacing, 10 feet.
 - 3. 1-1/4-Inch NPS: Maximum horizontal spacing, 72 inches with 3/8-inch minimum rod diameter; maximum vertical spacing, 10 feet.
 - 4. 1-1/2 and 2-Inch NPS: Maximum horizontal spacing, 96 inches with 3/8-inch minimum rod diameter; maximum vertical spacing, 10 feet.
 - 5. 2-1/2-Inch NPS: Maximum horizontal spacing, 108 inches with 1/2-inch minimum rod diameter; maximum vertical spacing, 10 feet.
 - 6. 3-Inch NPS: Maximum horizontal spacing, 10 feet with 1/2-inch minimum rod diameter; maximum vertical spacing, 10 feet.
- L. Install hangers for steel, cast and ductile-iron piping with the following maximum spacing and minimum rod diameters:
 - 1. 1-1/4-Inch NPS and Smaller: Maximum horizontal spacing, 84 inches with 3/8-inch minimum rod diameter; maximum vertical spacing, 15 feet.
 - 2. 1-1/2-Inch NPS: Maximum horizontal spacing, 108 inches with 3/8-inch minimum rod diameter; maximum vertical spacing, 15 feet.
 - 3. 2-Inch NPS: Maximum horizontal spacing, 10 feet with 3/8-inch minimum rod diameter; maximum vertical spacing, 15 feet.
 - 4. 2-1/2-Inch NPS: Maximum horizontal spacing, 11 feet with 1/2-inch minimum rod diameter; maximum vertical spacing, 15 feet.
 - 5. 3-Inch NPS: Maximum horizontal spacing, 12 feet with 1/2-inch minimum rod diameter; maximum vertical spacing, 15 feet.
 - 6. 4- and 5-Inch NPS: Maximum horizontal spacing, 12 feet with 5/8-inch minimum rod diameter; maximum vertical spacing, 15 feet.

M. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.

3.4 FLEXIBLE CONNECTOR INSTALLATION

- A. Install flexible connectors where indicated on drawings.
- B. Install connectors in strict accordance with manufacturer installation instructions

3.5 THERMOMETER INSTALLATION

A. Install thermometers and adjust vertical and tilted positions.

- B. Install thermometers at the following locations:
 - 1. Inlet and outlet of each hydronic coil in air-handling units and built-up central systems.
- C. Install separable sockets in vertical position in piping tees where fixed thermometers are indicated.
- D. When thermometers are installed in piping 1" and smaller, install well in 1-1/4" with reducers to prevent restriction of flow.

3.6 PRESSURE-GAGE INSTALLATION

- A. Install pressure gages in piping tees with pressure-gage valve located on pipe at most readable position.
- B. Install pressure gages at the following locations:
 - 1. Install liquid-filled-type pressure gages at suction and discharge of each pump.

END OF SECTION 230505

SECTION 230523 – VALVES FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

A. CWP: Cold working pressure.

1.3 SUMMARY

A. This Section includes general duty valves common to several mechanical piping systems. Special purpose valves are specified in Division 23 piping system Sections.

1.4 SUBMITTALS

- A. General: Submit each item in this Article according to the Conditions of the Contract and Division 01 Specification Sections.
- B. Product Data for each valve type. Include body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and arrangement, dimensions and required clearances, and installation instructions. Include list indicating valve and its application.
- C. Maintenance data for valves to include in the operation and maintenance manual specified in Division 01. Include detailed manufacturer's instructions on adjusting, servicing, disassembling, and repairing.
- D. See Submittal Schedule located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.9 for building services piping and ASME B31.1 for power piping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ball Valves:

- a. Conbraco Industries, Inc.; Apollo Division.
- b. Hammond Valve Corporation.
- c. Milwaukee Valve Company, Inc.
- d. NIBCO Inc.
- e. Stockham Valves & Fittings, Inc.
- f. Tyler Pipe.
- g. Victaulic Company of America.

2. Butterfly Valves:

- a. Center Line, Mark Controls Corporation.
- b. Crane Company; Valves and Fitting Division.
- c. General Signal; DeZurik Unit.
- d. Grinnell Corp.
- e. Hammond Valve Corporation.
- f. Keystone Valve USA, Inc.
- g. Milwaukee Valve Company, Inc.
- h. NIBCO Inc.
- i. Red-White Valve Corp.
- j. Stockham Valves & Fittings, Inc.
- k. Tyler Pipe.
- l. Ultraflo Corporation.
- m. Victaulic Company of America.

3. Check Valves:

- a. Cla-Val Co.
- b. Conbraco Industries, Inc.; Apollo Division.
- c. Hammond Valve Corporation.
- d. Keystone Valve USA, Inc.
- e. Kitz Corp. of America.
- f. Metraflex Company.
- g. Milwaukee Valve Company, Inc.
- h. NIBCO Inc.
- i. Red-White Valve Corp.
- j. Stockham Valves & Fittings, Inc.
- k. Tyler Pipe.
- l. Val-Matic Valve & Mfg. Corp.
- m. Victaulic Company of America.

2.2 BASIC, COMMON FEATURES

- A. Pressure and Temperature Ratings: As indicated in the "Application Schedule" of Part 3 of this Section and as required to suit system pressures and temperatures.
- B. Sizes: Same size as upstream pipe, unless otherwise indicated.
- C. Operators: Use specified operators and handwheels, except provide the following special operator features:
 - 1. Lever Handles: For quarter-turn valves 6 inches and smaller.
 - 2. Memory Stops: For balancing applications.

- D. Extended Stems: Where insulation is indicated or specified, provide extended stems arranged to receive insulation.
- E. Threads: ASME B1.20.1.
- F. Flanges: ASME B16.1 for cast iron, ASME B16.5 for steel, and ASME B16.24 for bronze valves.
- G. Solder Joint: ASME B16.18.

2.3 BALL VALVES

A. Ball Valves, 4 Inches and Smaller: MSS SP-110, Class 150, 600-psi CWP, ASTM B 584 bronze body and bonnet, 2-piece construction; chrome-plated brass ball, standard port for 1/2-inch valves and smaller and conventional port for 3/4-inch valves and larger; blowout proof; bronze or brass stem; teflon seats and seals; threaded or soldered end connections, lever handle operator.

2.4 BUTTERFLY VALVES

A. Butterfly Valves: MSS SP-67, 200-psi CWP, 150-psi maximum pressure differential, ASTM A 126 castiron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals, wafer, lug, or grooved style, nickel-plated ductile iron, disk per application.

2.5 CHECK VALVES

- A. Swing Check Valves, 2-1/2 Inches and Smaller: MSS SP-80; Class 125, 200-psi CWP, or Class 150, 300-psi CWP; horizontal swing, Y-pattern, ASTM B 62 cast-bronze body and cap, rotating bronze disc with rubber seat or composition seat, threaded or soldered end connections:
- B. Swing Check Valves, 3 Inches and Larger: MSS SP-71, Class 125, 200-psi CWP, ASTM A 126 cast-iron body and bolted cap, horizontal-swing bronze disc, flanged or grooved end connections.
- C. Wafer Check Valves: Class 125, 200-psi CWP, ASTM A 126 cast-iron body, bronze disc/plates, stainless-steel pins and springs, Buna N seals, installed between flanges.
- D. Lift Check Valves: Class 125, ASTM B 62 bronze body and cap (main components), horizontal or vertical pattern, lift-type, bronze disc or Buna N rubber disc with stainless-steel holder threaded or soldered end connections.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance of valves. Do not proceed with installation until unsatisfactory conditions have been corrected.
- B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

- C. Operate valves from fully open to fully closed positions. Examine guides and seats made accessible by such operation.
- D. Examine threads on valve and mating pipe for form and cleanliness.
- E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Check gasket material for proper size, material composition suitable for service, and freedom from defects and damage.
- F. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves as indicated, according to manufacturer's written instructions.
- B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of piping, fittings, and specialties.
- C. Install valves with unions or flanges at each piece of equipment arranged to allow servicing, maintenance, and equipment removal without system shutdown.
- D. Locate valves for easy access and provide separate support where necessary.
- E. Install valves in horizontal piping with stem at or above the center of the pipe.
- **F.** Install valves in a position to allow full stem movement.
- G. Installation of Check Valves: Install for proper direction of flow as follows:
 - 1. Swing Check Valves: Horizontal position with hinge pin level.
 - 2. Wafer Check Valves: Horizontal or vertical position, between flanges.
 - 3. Lift Check Valve: With stem upright and plumb.

3.3 VALVE END SELECTION

- A. Select valves with the following ends or types of pipe/tube connections:
 - 1. Copper Tube Size, 2-1/2 Inches and Smaller: Solder ends, except provide threaded ends for heating hot water service.
 - 2. Steel Pipe Sizes, 2-1/2 Inches and Smaller: Threaded or grooved end.
 - 3. Steel Pipe Sizes, 3 Inches and Larger: Grooved end or flanged.

3.4 APPLICATION SCHEDULE

- A. General Application: Use ball, and butterfly valves for shutoff duty; ball and butterfly valves for throttling duty. Refer to piping system Specification Sections for specific valve applications and arrangements.
- B. Heating Water Systems: Use the following valve types:
 - 1. Ball Valves: Class 150, 600-psi CWP, with stem extension and memory stop.

- 2. Butterfly Valves: Nickel-plated ductile iron, aluminum bronze, or epoxy-coated ductile iron disc; EPDM or Buna N sleeve and stem seals.
- 3. Bronze Swing Check: Class 150, with composition seat.
- 4. Check Valves: Iron swing, wafer, or lift type, as indicated. Swing check shall be Class 150 with bronze seat ring.
- C. Chilled-Water Systems: Use the following valve types:
 - 1. Ball Valves: Class 150, 600-psi CWP, with stem extension and memory stop.
 - 2. Butterfly Valves: Nickel-plated ductile iron, aluminum bronze, or elastomer-coated ductile iron disc; EPDM sleeve and stem seals.
 - 3. Check Valves: Class 125, bronze body swing check with rubber seat; Class 125, cast-iron body swing check; Class 125, cast-iron body wafer check; or Class 125, cast-iron body lift check.

3.5 ADJUSTING

A. Adjust or replace packing after piping systems have been tested and put into service, but before final adjusting and balancing. Replace valves if leak persists.

END OF SECTION 230523

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes testing, adjusting, and balancing HVAC systems to produce design objectives.

1.3 DEFINITIONS

- A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.
- B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to design quantities.
- C. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.
- D. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.
- E. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- F. Testing, Adjusting, and Balancing Agent: The entity responsible for performing and reporting the testing, adjusting, and balancing procedures.
- G. AABC: Associated Air Balance Council.
- H. AMCA: Air Movement and Control Association.
- I. NEBB: National Environmental Balancing Bureau.
- J. SMACNA: Sheet Metal and Air Conditioning Contractors' National Association.

1.4 SUBMITTALS

- A. Quality-Assurance Submittals: Within 30 days from the Contractor's Notice to Proceed, submit 2 copies of evidence that the testing, adjusting, and balancing Agent and this Project's testing, adjusting, and balancing team members meet the qualifications specified in the "Quality Assurance" Article below.
- B. Certified Testing, Adjusting, and Balancing Reports: Submit 2 copies of reports prepared, as specified in this Section, on approved forms certified by the testing, adjusting, and balancing Agent.

- C. Sample Report Forms: Submit 2 sets of sample testing, adjusting, and balancing report forms.
- D. See Submittal Schedule located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

- A. Agent Qualifications: Engage a testing, adjusting, and balancing agent certified by either AABC or NEBB.
- B. Testing, Adjusting, and Balancing Conference: Meet with the Owner's and the Architect's representatives on approval of the testing, adjusting, and balancing strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of testing, adjusting, and balancing team members, equipment manufacturers' authorized service representatives, HVAC controls Installer, and other support personnel.
- C. Certification of Testing, Adjusting, and Balancing Reports: Certify the testing, adjusting, and balancing field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified testing, adjusting, and balancing reports.
 - 2. Certify that the testing, adjusting, and balancing team complied with the approved testing, adjusting, and balancing plan and the procedures specified and referenced in this Specification.
- D. Testing, Adjusting, and Balancing Reports: Use testing, adjusting, and balancing Agent's standard forms approved by the Architect/Engineer.
- E. Instrumentation Type, Quantity, and Accuracy: As described in NEBB standards.
- F. Instrumentation Calibration: Calibrate instruments at least every 6 months or more frequently if required by the instrument manufacturer.

1.6 PROJECT CONDITIONS

A. Owner Occupancy: The Owner may occupy completed areas of the building before Substantial Completion. Cooperate with the Owner during testing, adjusting, and balancing operations to minimize conflicts with the Owner's operations.

1.7 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist testing, adjusting, and balancing activities.
- B. Perform testing, adjusting, and balancing after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Contract Documents to become familiar with project requirements and to discover conditions in systems' designs that may preclude proper testing, adjusting, and balancing of systems and equipment.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine equipment performance data, including fan and pump curves. Relate performance data to project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- D. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Specification Sections have been performed.
- E. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- F. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- G. Examine air-handling equipment to ensure clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- H. Examine terminal units, such as variable-air-volume boxes to verify that they are accessible and their controls are connected and functioning.
- I. Examine strainers for clean screens and proper perforations.
- J. Examine 3-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- L. Examine automatic temperature system components to verify proper operation.
- M. Report deficiencies discovered before and during performance of testing, adjusting, and balancing procedures.

3.2 GENERAL TESTING AND BALANCING PROCEDURES

- A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to the insulation Specifications for this Project.
- C. Mark equipment settings with paint or other suitable, permanent identification material, including damper-control positions, valve indicators, fan-speed-control levers, and similar controls and devices, to show final settings.

3.3 FUNDAMENTAL AIR SYSTEMS' BALANCING PROCEDURES

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- E. Check dampers for proper position to achieve desired airflow path.
- F. Check for airflow blockages.
- G. Check condensate drains for proper connections and functioning.

3.4 CONSTANT-VOLUME AIR SYSTEMS' BALANCING PROCEDURES

- A. Adjust fans to deliver total design airflows within the maximum allowable rpm listed by the fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - 2. Measure static pressure across each air-handling unit component.
 - 3. Adjust fan speed higher or lower than design with the approval of the Architect/Engineer. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fanspeed changes. Do not make fan-speed adjustments that result in motor overload.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to design airflows within specified tolerances.
- C. Adjust terminal outlets and inlets for each space to design airflows within specified tolerances of design values. Make adjustments using volume dampers rather than extractors and the dampers at the air terminals.

3.5 VARIABLE-AIR-VOLUME SYSTEMS' ADDITIONAL PROCEDURES

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the fan design airflow volume, place a selected number of terminal units at a maximum set-point airflow condition until the total airflow of the terminal units equals the design airflow of the fan. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outside-air dampers at minimum, and return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge duct losses.
 - 3. Measure total system airflow. Adjust to within 10 percent of design airflow.

- 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use the terminal unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
- 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
- 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.
- 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure adequate static pressure is maintained at the most critical unit.
- 8. Record the final fan performance data.

3.6 FUNDAMENTAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare schematic diagrams of systems' "as-built" piping layouts.
- B. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check expansion tank liquid level.
 - 3. Check makeup-water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation and set at design flow.
 - 5. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 6. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.7 HYDRONIC SYSTEMS' BALANCING PROCEDURES

- A. Determine water flow at pumps. Use the following procedures.
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Verify with the pump manufacturer that this will not damage pump. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on the manufacturer's pump curve at zero flow and confirm that the pump has the intended impeller size.
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark the pump manufacturer's head-capacity curve. Adjust pump discharge valve until design water flow is achieved.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on the pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
- B. Set calibrated balancing valves, if installed, at calculated presettings.
- C. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures.
- D. Measure the differential-pressure control valve settings existing at the conclusions of balancing.

- E. Balance systems with automatic 2- and 3-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.
- F. Primary-Secondary Systems: Balance the primary system crossover flow first, then balance the secondary system.

3.8 TEMPERATURE TESTING

- A. During testing, adjusting, and balancing, report need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.

3.9 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans: minus 10 to plus 10 percent.
 - 2. Air Outlets and Inlets: minus 10 to plus 10 percent.
 - 3. Water Flow Rate: minus 5 to plus 5 percent.

3.10 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in 3-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
- C. General Report Data: In addition to the form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of testing, adjusting, and balancing Agent.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of testing, adjusting, and balancing Agent who certifies the report.
 - 10. Summary of contents.
 - 11. Notes to explain why certain final data in the body of reports vary from design values.
 - 12. Test conditions for fans and pump performance forms.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems.
- E. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data: Include the following:

- a. Unit identification.
- b. Location.
- c. Make and type.
- d. Model number and unit size.
- e. Manufacturer's serial number.
- f. Unit arrangement and class.
- g. Discharge arrangement.
- h. Sheave make, size in inches, and bore.
- i. Sheave dimensions, center-to-center and amount of adjustments in inches.
- j. Number of belts, make, and size.
- k. Number of filters, type, and size.

2. Motor Data: Include the following:

- a. Make and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches, and bore.
- f. Sheave dimensions, center-to-center and amount of adjustments in inches.

3. Test Data: Include design and actual values for the following:

- a. Total airflow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Filter static-pressure differential in inches wg.
- f. Preheat coil static-pressure differential in inches wg.
- g. Cooling coil static-pressure differential in inches wg.
- h. Heating coil static-pressure differential in inches wg.
- i. Outside airflow in cfm.
- j. Return airflow in cfm.
- k. Outside-air damper position.
- 1. Return-air damper position.
- m. Variable frequency drive setting.

F. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data: Include the following:

- a. System identification.
- b. Location.
- c. Make and type.
- d. Model number and size.
- e. Manufacturer's serial number.
- f. Arrangement and class.
- g. Sheave make, size in inches, and bore.
- h. Sheave dimensions, center-to-center and amount of adjustments in inches.

2. Motor Data: Include the following:

- a. Make and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.

- d. Full-load amperage and service factor.
- e. Sheave make, size in inches, and bore.
- f. Sheave dimensions, center-to-center and amount of adjustments in inches.
- g. Number of belts, make, and size.
- 3. Test Data: Include design and actual values for the following:
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- G. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data: Include the following:
 - System and air-handling unit number.
 - b. Location and zone.
 - c. Duct static pressure in inches wg.
 - d. Duct size in inches.
 - e. Duct area in sq. ft..
 - f. Design airflow rate in cfm.
 - g. Design velocity in fpm.
 - h. Actual airflow rate in cfm.
 - i. Actual average velocity in fpm.
 - j. Barometric pressure in psig.
- H. Air-Terminal-Device Reports: For terminal units, include the following:
 - 1. Unit Data: Include the following:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Test apparatus used.
 - d. Area served.
 - e. Air-terminal-device make.
 - f. Air-terminal-device number from system diagram.
 - g. Air-terminal-device type and model number.
 - h. Air-terminal-device size.
 - i. Air-terminal-device effective area in sq. ft..
 - 2. Test Data: Include design and actual values for the following:
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
- I. Air Outlet Reports:
 - 1. Air outlet data
 - a. Make and type.
 - b. Model number and size.

- 2. Test data: Include design and actual data for the following:
 - Airflow rate in cfm.
- J. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data: Include the following:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data: Include design and actual values for the following:
 - a. Airflow rate in cfm.
 - b. Air pressure drop in inches wg.
 - c. Water pressure drop in feet of head or psig.
- K. Pump Test Reports: For pumps, include the following data. Calculate impeller size by plotting the shutoff head on pump curves.
 - 1. Unit Data: Include the following:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model and serial numbers.
 - f. Water flow rate in gpm.
 - g. Water pressure differential in feet of head or psig.
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump rpm.
 - j. Impeller diameter in inches.
 - k. Motor make and frame size.
 - 1. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data: Include design and actual values for the following:
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.

- L. Instrument Calibration Reports: For instrument calibration, include the following:
 - 1. Report Data: Include the following:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.11 ADDITIONAL TESTS

- A. Within 90 days of completing testing, adjusting, and balancing, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial testing, adjusting, and balancing procedures were not performed during nearpeak summer and winter conditions, perform additional inspections, testing, and adjusting during nearpeak summer and winter conditions.

END OF SECTION 230593

SECTION 230700 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes semi-rigid and flexible duct insulation; acoustical duct liner; field applied jackets; accessories and attachments; and sealing compounds.

1.3 SUBMITTALS

- A. Product Data: Include product data description, list of materials, thickness, density, k-values and r-values for each product type, locations, manufacturer's installation instructions, flames spread and smoke developed ratings.
- B. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Insulation:
 - a. CertainTeed
 - b. Armaflex
 - c. Rubatex
 - d. Knauf

- e. Owens-Corning
- f. Halstead
- g. Armstrong
- h. Manville
- i. Pittsburgh Corning

2.2 INSULATION MATERIALS

- A. Mineral-Fiber Board Thermal Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IB, without facing and with all-service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil, and vinyl film.
- B. Mineral-Fiber Blanket Thermal Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type I, 0.75 pcf density, without facing and with all-service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil, and vinyl film.
- C. Acoustical duct liner: ASTM C 518 with resin and black mat coated surface exposed to air stream to prevent erosion of glass fibers. Thermal Conductivity (k-Value): 0.26 at 75 deg F mean temperature. Nominal Density 1.5 lbs per cubic foot, minimum noise reduction characteristic shall be 0.55 for 1" thickness; rated for 6000 fpm air velocity; air friction multiplier less than 1.6 at 2000 fpm.
- D. Exterior Jacket: Alumaguard 60 or equal. UV Resistant, watertight, laminated waterproofing and vapor barrier membrane.

2.3 ACCESSORIES AND ATTACHMENTS

- A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, pre-sized a minimum of 8 oz./sq. yd..
- B. Bands: 3/4 inch wide, materials compatible with jacket:
- C. Wire: 0.080-inch, nickel-copper alloy; 0.062-inch, soft-annealed, stainless steel; or 0.062-inch, soft-annealed, galvanized steel.
- D. Weld-Attached Anchor Pins and Washers: Copper-coated steel pin for capacitor-discharge welding and galvanized speed washer. Pin length sufficient for insulation thickness indicated.
- E. Adhesive-Attached Anchor Pins and Speed Washers: Galvanized steel plate, pin, and washer manufactured for attachment to duct and plenum with adhesive. Pin length sufficient for insulation thickness indicated.

2.4 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

2.5 FIELD-APPLIED JACKETS

- A. Field-applied jackets comply with ASTM C921, Type I, unless otherwise indicated.
- B. Metal Jacket:

- 1. Aluminum Jacket: Comply with ASTM B209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.

PART 3 - EXECUTION

3.1 EXAMINATION AND PREPARATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 MINERAL-FIBER BOARD INSULATION APPLICATION

- A. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inchwide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.]

3.3 MINERAL-FIBER BLANKET INSULATION APPLICATION

- A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; and free of voids throughout the length of ducts and fittings.
- B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each duct system.
- C. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.
- D. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.
- E. Apply insulation with the least number of joints practical.
- F. Apply insulation over fittings and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
- G. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic. Apply insulation continuously through hangers and around anchor attachments.
- H. Apply insulation with integral jackets as follows:
 - 1. Pull jacket tight and smooth.
 - 2. Joints and Seams: Cover with tape and vapor retarder as recommended by insulation material manufacturer to maintain vapor seal.
 - 3. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- I. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- J. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.

- 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- K. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and partitions, except fire-rated walls and partitions.
- L. Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire/smoke damper sleeves for fire-rated wall and partition penetrations.
- M. Floor Penetrations: Terminate insulation at underside of floor assembly and at floor support at top of floor.
- N. Secure insulation with adhesive and anchor pins and speed washers.

3.4 SHOP APPLICATION OF LINER IN RECTANGULAR DUCTS

- A. Adhere a single layer of indicated thickness of duct liner with 90 percent coverage of adhesive at liner contact surface area. Multiple layers of insulation to achieve indicated thickness are prohibited.
- B. Butt transverse joints without gaps and coat joint with adhesive.
- C. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
- D. Do not apply liners in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and standard liner product dimensions make longitudinal joints necessary.
- E. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely around perimeter; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
- F. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profile or are integrally formed from duct wall.
- G. Ductwork sizes indicated on drawings are the free area size. Ductwork sizes shall be increased to accommodate the addition of liner to maintain the plan indicated free area size.

3.5 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.

3.6 DUCT AND PLENUM APPLICATION SCHEDULE

- A. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:
 - 1. Fibrous-glass ducts.

- 2. Factory-insulated flexible ducts.
- 3. Factory-insulated plenums, casings, terminal boxes, and filter boxes and sections.
- 4. Flexible connectors.
- 5. Vibration-control devices.
- 6. Testing agency labels and stamps.
- 7. Nameplates and data plates.
- 8. Access panels and doors in air-distribution systems.
- B. See "Ductwork Insulation Schedule" on Sheet M4.00

END OF SECTION 230700

SECTION 230720 - PIPE INSULATION FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes preformed, rigid and flexible pipe insulation; insulating cements; accessories and attachments; and sealing compounds.

1.3 SUBMITTALS

- A. Product Data: Include product data description, list of materials, thickness, density, k-values and r-values for each product type, locations, manufacturer's installation instructions, flames spread and smoke developed ratings.
- B. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mineral-Fiber Insulation:
 - a. CertainTeed Manson.
 - b. Knauf FiberGlass GmbH.
 - c. Owens-Corning Fiberglas Corp.
 - d. Schuller International, Inc.

- e. Johns Manville
- 2. Flexible Elastomeric Thermal Insulation:
 - a. Armacell
 - b. Armstrong World Industries, Inc.
 - c. Rubatex Corp.

2.2 INSULATION MATERIALS

- A. Mineral-Fiber Insulation: Glass fibers bonded with a thermosetting resin complying with the following:
 - 1. Preformed Pipe Insulation: Comply with ASTM C 547, Type 1, with factory-applied, all-purpose, vapor-retarder jacket.
 - a. Nominal density is 2.5 lb/cu. Ft. or more.
 - b. Thermal conductivity (k-value) at 125 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less.
 - 2. Fire-Resistant Adhesive: Comply with MIL-A-3316C in the following classes and grades:
 - a. Class 1, Grade A for bonding glass cloth and tape to unfaced glass-fiber insulation, for sealing edges of glass-fiber insulation, and for bonding lagging cloth to unfaced glass-fiber insulation.
 - b. Class 2, Grade A for bonding glass-fiber insulation to metal surfaces.
 - 3. Vapor-Retarder Mastics: Fire- and water-resistant, vapor-retarder mastic for indoor applications. Comply with MIL-C-19565C, Type II.
 - 4. Mineral-Fiber Insulating Cements: Comply with ASTM C 195.
 - 5. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
- B. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.
- C. Standard PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 20-mil- thick, high-impact, ultraviolet-resistant PVC.
 - 1. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
 - 2. Adhesive: As recommended by insulation material manufacturer.
- D. Aluminum Jacket: Aluminum roll stock, ready for shop or field cutting and forming to indicated sizes. Comply with ASTM B 209, 3003 alloy, H-14 temper.
 - 1. Finish and Thickness: Smooth finish, 0.020 inch thick.
 - 2. Moisture Barrier: 1-mil- thick, heat-bonded polyethylene and kraft paper.
 - 3. Elbows: Preformed, 45- and 90-degree, short- and long-radius elbows; same material, finish, and thickness as jacket.

2.3 ACCESSORIES AND ATTACHMENTS

- A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, pre-sized a minimum of 8 oz./sq. yd, 4 inch tape width.
- B. Bands: 3/4 inch wide, materials compatible with jacket:
- C. Wire: 0.080-inch, nickel-copper alloy; 0.062-inch, soft-annealed, stainless steel; or 0.062-inch, soft-annealed, galvanized steel.

2.4 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 - EXECUTION

3.1 EXAMINATION AND PREPARATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
- B. Surface Preparation: Clean and dry pipe and fitting surfaces. Remove materials that will adversely affect insulation application.

3.2 GENERAL APPLICATION REQUIREMENTS

- A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.
- B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each piping system.
- C. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.
- D. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.
- E. Apply insulation with the least number of joints practical.
- F. Apply insulation over fittings, valves, and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated. Refer to special instructions for applying insulation over fittings, valves, and specialties.
- G. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers, clamps, and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.

- 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- H. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic.
- I. Insulation Terminations: For insulation application where vapor retarders are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.
- J. Apply adhesives and mastics at the manufacturer's recommended coverage rate.
- K. Apply insulation with integral jackets as follows:
 - 1. Pull jacket tight and smooth.
 - 2. Circumferential Joints: Cover with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip and spaced 4 inches o.c.
 - 3. Longitudinal Seams: Overlap jacket seams at least 1-1/2 inches. Apply insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap.
 - 4. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to flanges, unions, valves, and fittings.
 - At penetrations in jackets for thermometers and pressure gages, fill and seal voids with vaporretarder mastic.
- L. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- M. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- N. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- O. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- P. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 for firestopping and fire-resistive joint sealers.
- Q. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies.

3.3 MINERAL-FIBER INSULATION APPLICATION

- A. Apply insulation to straight pipes and tubes buy securing each layer of preformed pipe insulation to pipe with wire, tape, or bands without deforming insulation materials.
- B. Apply preformed pipe insulation to outer diameter of pipe flange.
- C. Apply insulation to fittings and elbows as follows:
 - 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation elbows and fittings are not available, apply mitered sections of pipe insulation, or glass-fiber blanket insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire, tape, or bands.
 - 3. Cover fittings with standard PVC fitting covers.
- D. Apply insulation to valves and specialties as follows:
 - 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation sections are not available, apply glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Use preformed standard PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.
 - 4. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.

3.4 FLEXIBLE ELASTOMERIC THERMAL INSULATION APPLICATION

- A. Apply insulation to straight pipes and tubes as follows:
 - 1. Follow manufacturer's written instructions for applying insulation.
 - 2. Seal longitudinal seams and end joints with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.
- B. Apply pipe insulation to outer diameter of pipe flanges.
- C. Apply insulation to fittings and elbows as follows:
 - 1. Apply mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

- D. Apply insulation inserts at hangers and anchor locations.
 - 1. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- E. Apply insulation to valves and specialties as follows:
 - 1. Apply preformed valve covers manufactured of the same material as pipe insulation and attached according to the manufacturer's written instructions.
 - 2. Apply cut segments of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

3.5 INSULATION APPLICATION SCHEDULE

- A. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:
 - 1. Flexible connectors.
 - 2. Vibration-control devices.
 - 3. Chrome-plated pipes and fittings, unless potential for personnel injury.
 - 4. Air chambers, unions, strainers, check valves, plug valves, and flow regulators.
- B. See "PIPING INSULATION SCHEDULE" on Sheet M4.00

END OF SECTION 230720

PART 1 - GENERAL

1.1 PRODUCT FURNISHED BUT NOT INSTALLED UNDER THIS SECTION

- A. Section 232113 Heating and cooling piping:
 - 1. Control valves
 - 2. Press and temp sensor wells & sockets
 - 3. Temp sensor wells and sockets

1.2 PRODUCTS NOT FURNISHED OR INSTALLED UNDER BUT INTEGRATED WITH THE WORK OF THIS SECTION

A. General:

1. Coordination Meeting: The Installer furnishing the DDC network shall meet with the Installer(s) furnishing each of the following products to coordinate details of the interface between these products and the DDC network. The Owner or his designated representative shall be present at this meeting. Each Installer shall provide the Owner and all other Installers with details of the proposed interface including PICS for BACnet equipment, hardware and software identifiers for the interface points, network identifiers, wiring requirements, communication speeds, and required network accessories. The purpose of this meeting shall be to insure there are no unresolved issues regarding the integration of these products into the DDC network. Submittals for these products shall not be approved prior to the completion of this meeting.

B. Communications with Third Party Equipment:

1. Any additional integral control systems included with the products integrated with the work of this section shall be furnished with a BACnet interface for integration into the Direct Digital Control System described in this section.

1.3 RELATED SECTIONS

- A. The General Conditions of the Contract, Supplementary Conditions, and General Requirements are part of this specification and shall be used in conjunction with this section as part of the contract documents.
- B. Section 230993 "Sequence of Operations for HVAC Controls" for control sequences in BAS systems
- C. The Owner has contracted directly with the Commissioning Authority (CxA) for this project. All Contractors shall cooperate with the CxA to complete all required commissioning. Specification Section 019113 defines the Contractor's responsibilities with respect to the process. The Contractor shall review this section and shall include in their bids the work associated with the commissioning effort described.

1.4 DESCRIPTION

- A. General: The control system shall consist of a high-speed, peer-to-peer network of DDC controllers and an operator workstation. The operator workstation shall provide for overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.
- B. General: The control system shall consist of a high-speed, peer-to-peer network of DDC controllers, a control system server, and an operator workstation. Depict each mechanical system and building floor plan by a point and click graphic. A web server with a network interface card shall gather data from this system and generate web pages accessible through a conventional web browser on each PC connected to the network. Operators shall be able to perform all normal operator functions through the web browser interface.
- C. System software shall be based on a server/thin-client architecture, designed around the open standards of web technology. The control system server shall be accessed using a web browser over the control system network, the Owner's local area network, and remotely over the Internet (through the Owner's LAN).
- D. The intent of the thin-client architecture is to provide operators complete access to the control system via a web browser. No special software other than a web browser shall be required to access graphics, point displays, and trends, configure trends, configure points and controllers, or to edit programming.
- E. Up to 10 users shall be able to use the system simultaneously.
- F. General: The control system shall consist of a high-speed, peer-to-peer network of DDC controllers, a control system server, and/or an operator workstation.
- G. The control system server and/or operator workstation shall provide for overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.
- H. The system shall support web browser access to the building data. A remote user using a standard web browser shall be able to access the control system graphics and change adjustable setpoints with the proper password.

1.5 APPROVED CONTROL SYSTEM PRIMARY CONTRACTORS

A. The following are approved Omaha area control system contractors and product lines

Contractor (Omaha, NE)	Product Line
Cerris Systems	Alerton/Siemens

Note:

- 1. The order of the above list of contractors does not indicate preference. Inclusion on this list does not guarantee acceptance of products or installation. Control systems shall comply with the terms of this specification.
- 2. Use operator workstation software, controller software, custom application programming language, building controllers, custom application controllers, and application specific controllers only from one of the manufacturers and product lines listed.

1.6 QUALITY ASSURANCE

A. Installer and Manufacturer Qualifications

- 1. Installer shall have an established working relationship with Control System Manufacturer of not less than three years.
- 2. Installer shall have a local staff within 100 miles of the project site that are trained and capable of giving instructions and providing routine and emergency maintenance of the BAS, all components and software/firmware and all other elements of the BAS.
- 3. Have comprehensive local service and support facilities for the total BAS as provided.
- 4. Maintain local, or have approved local contracted access to, supplies of essential expendable parts.

1.7 CODES AND STANDARDS

- A. Work, materials, and equipment shall comply with the most restrictive of local, state, and federal authorities' codes and ordinances or these plans and specifications. As a minimum, the installation shall comply with current editions in effect 30 days prior to receipt of bids of the following codes:
 - 1. National Electric Code (NEC)
 - 2. International Building Code (IBC)
 - 3. International Mechanical Code (IMC)
 - 4. Local codes and amendments.
 - 5. ASHRAE/ANSI 135-2016: Data Communication Protocol for Building Automation and Control systems (BACnet)

1.8 SUBMITTALS

- A. Product Data and Shop Drawings: Meet requirements of Section 01 on Shop Drawings, Product Data, and Samples. In addition, Contractor shall provide shop drawings or other submittals on all hardware, software, and installation to be provided. No work may begin on any segment of this project until submittals have been successfully reviewed for conformity with the design intent. Six copies are required. Provide drawings as AutoCAD 2021 (or newer) compatible files on optical disk (file format: .dwg, .dxf, .vsd, or comparable) with three 11" x 17" prints of each drawing. When manufacturer's cutsheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Each submitted piece of literature and drawings shall clearly reference the specification and/or drawing that the submittal is to cover. General catalogs shall not be accepted as cut sheets to fulfill submittal requirements. Submittals shall be provided within 12 weeks of contract award. Submittals shall include:
 - 1. Direct Digital Control System Hardware:
 - a. A complete bill of materials of equipment to be used indicating quantity, manufacturer, model number, and other relevant technical data.
 - b. Schedule of dampers including size, leakage, and flow characteristics.
 - c. Schedule of valves including flow characteristics.
 - d. Manufacturer's description and technical data, such as performance curves, product specification sheets, and installation/maintenance instructions for the items listed below and other relevant items not listed below:
 - 1) Direct Digital Controller (controller panels)
 - 2) Transducers/Transmitters
 - 3) Sensors (including accuracy data)
 - 4) Actuators
 - 5) Valves
 - 6) Relays/Switches
 - 7) Control Panels
 - 8) Power Supply

- 9) Batteries
- 10) Operator Interface Equipment
- 11) Wiring
- e. Wiring diagrams and layouts for each control panel. Show all termination numbers.
- f. Schematic diagrams for all field sensors and controllers. Provide floor plans of all sensor locations and control hardware.

2. Central System Hardware and Software:

- a. A complete bill of material of equipment used, indicating quantity, manufacturer, model number, and other relevant technical data.
- b. Manufacturer's description and technical data, such as product specification sheets and installation/maintenance instructions for the items listed below and other relevant items not listed below:
 - 1) Central Processing Unit
 - 2) Monitors
 - 3) Printers
 - 4) Keyboard
 - 5) Power Supply
 - 6) Battery Backup
 - 7) Interface Equipment Between CPU and Control Panels
 - 8) Operating System Software
 - 9) Operator Interface Software
 - 10) Color Graphic Software
 - 11) Third-Party Software
- c. Schematic diagrams for all control, communication, and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- d. Riser diagrams of wiring between central control unit and all control panels.
- e. A list of the color graphic screens to be provided. For each screen, provide a conceptual layout of pictures and data and show or explain which other screens can be directly accessed.

3. Controlled Systems

- a. Riser diagrams showing control network layout, communication protocol, and wire types.
- b. A schematic diagram of each controlled system. The schematics shall have all control points labeled with point names shown or listed. The schematics shall graphically show the location of all control elements in the system.
- c. A schematic wiring diagram for each controlled system. Each schematic shall have all elements labeled. Where a control element is the same as that shown on the control system schematic, it shall be labeled with the same name. All terminals shall be labeled.
- d. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- e. A mounting, wiring, and routing plan-view drawing. The drawing shall be done in ¼ in. scale. The design shall take into account HVAC, electrical, and other systems' design and elevation requirements. The drawing shall show the specific location of all concrete pads and bases and any special wall bracing for panels to accommodate this work.
- f. A complete description of the operation of the control system, including sequences of operation. The description shall include and reference a schematic diagram of the controlled system.

- g. A point list for each system controller including both inputs and outputs (I/O), point number, the controlled device associated with the I/O point, and the location of the I/O device. Software flag points, alarm points, etc.
- 4. Quantities of items submitted shall be reviewed but are the responsibility of the Contractor.
- 5. A description of the proposed process along with all report formats and checklists to be used in Part 3: "Control System Demonstration and Acceptance."
- 6. A BACnet Protocol Implementation Conformance Statement (PICS) for each type of controller and operator interface included in the submittal.
- B. Project Record Documents: Upon completion of installation, submit three copies of record (as-built) documents. The documents shall be submitted for approval prior to final completion and shall include:
 - 1. Project Record Drawings. As-built versions of the submittal shop drawings provided in PDF formatted files on flash media and as 11" x 17" prints. System as-built drawings, control sequences, and points lists shall be provided for the control panels in each mechanical room. These documents shall be laminated or installed in a permanent plastic sleeve. Coordinate requirements with Owner.
 - 2. Testing and Commissioning Reports and Checklists. Completed versions of reports, checklists, and trend logs used to meet requirements of Part 3: "Control System Demonstration and Acceptance."
 - 3. Operation and Maintenance (O & M) Manual.
 - 4. As-built versions of submittal product data.
 - 5. Names, addresses, and 24-hour telephone numbers of installing contractors and service representatives for equipment and control systems.
 - 6. Operator's manual with procedures for operating control systems: logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing setpoints and variables.
 - 7. Programming manual or set of manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - 8. Engineering, installation, and maintenance manual or set of manuals that explains how to design and install new points, panels, and other hardware; how to perform preventive maintenance and calibration; how to debug hardware problems; and how to repair or replace hardware.
 - 9. Documentation of all programs created using custom programming language including setpoints, tuning parameters, and object database.
 - 10. Graphic files, programs, and database on magnetic or optical media.
 - 11. List of recommended spare parts with part numbers and suppliers.
 - 12. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
 - 13. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
 - 14. Licenses, guarantees, and warranty documents for equipment and systems.
 - 15. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
- C. Training Materials. Provide course outline and manual for each class at least six weeks before first class. Engineer will modify course outlines and manuals if necessary to meet Owner's needs. Engineer will review and approve course outlines and manuals at least three weeks before first class.

1.9 WARRANTY

A. Warrant work as follows:

- 1. Warrant labor and materials for specified control system free from defects for a period of 12 months after final acceptance. Control system failures during warranty period shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner. Respond during normal business hours within 24 hours of Owner's warranty service request.
- 2. Work shall have a single warranty date, even if Owner receives beneficial use due to early system start-up. If specified work is split into multiple contracts or a multi-phase contract, each contract or phase shall have a separate warranty start date and period.
- 3. Any software modifications or upgrades that become standard product offerings from the BAS contractor and/or BAS equipment vendors during the warranty period shall be brought to the attention of the Owner and, if the Owner wishes, shall be provided at no additional cost to the Owner. If available, Owner can purchase in-warranty service agreement to receive upgrades for functional enhancements associated with above-mentioned items. Do not install updates or upgrades without Owner's written authorization.

1.10 OWNERSHIP OF PROPRIETARY MATERIAL

- A. Project-specific software and documentation shall become Owner's property. This includes, but is not limited to:
 - 1. Graphics
 - 2. Record drawings
 - 3. Database
 - 4. Application programming code
 - 5. Documentation
 - 6. All software and hardware licenses

1.11 DEFINITIONS

- A. BAS: Building automation system.
- B. DDC: Direct digital control.
- C. BACnet Interoperability Building Blocks (BIBB): A BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBS are combined to build the BACnet functional requirements for a device in a specification.
- D. BACnet/BACnet Standard: BACnet communication requirements as defined by the latest version of ASHRAE/ANSI 135 and approved addenda.
- E. Gateway: Bi-directional protocol translator connecting control systems that use different communication protocols.
- F. LAN: Local Area Network. Computer or control system communications network limited to local building or campus.
- G. PICS: Protocol Implementation Conformance Statement. A written document that

Project No: 25336

Morrissey Engineering Inc.

2.1 CONTROL SYSTEM BASIS OF DESIGN

A. New equipment to utilize existing system network. Contractor shall provide additional control panels as necessary to house new equipment controllers.

2.2 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Do not use this installation as a product test site unless explicitly approved in writing by Owner or Owner's representative. Spare parts shall be available for at least five years after completion of this contract.

2.3 COMMUNICATION NETWORK

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet or Lonmark internetwork. Only the open protocols BACnet or Lontalk will be accepted on this project. Lontalk controllers must be certified through Lonmark (www.lonmark.org) and BACnet controllers shall follow the standard BACnet templates and conform to ANSI/ASHRAE Standard 135-2004, BACnet. No other communication protocols will be accepted.
- B. All Building Controllers shall have a communications port for connections with the operator interfaces. This may be either a network interface node for connection to the Ethernet network or an RS-232/RS-485 port for Point to Point connection.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute specified control system operation. An authorized operator shall be able to edit cross-controller links by typing a standard object address.
- D. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- E. Workstations, Building Control Panels and Controllers with real-time clocks shall use a time synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 CONTROLLER SOFTWARE

A. Furnish the following applications software for building and energy management. All software applications shall reside and operate in the system controllers. Editing of applications shall occur at the operator workstation.

B. System Security

- 1. User access shall be secured using individual security passwords and user names.
- 2. Passwords shall restrict the user to the objects, applications, and system functions as assigned by the system manager.
- 3. User Log On/Log Off attempts shall be recorded.
- 4. The system shall protect itself from unauthorized use by automatically logging off following the last keystroke. The delay time shall be user-definable.
- C. Scheduling. Provide the capability to schedule each object or group of objects in the system. Each schedule shall consist of the following:
 - 1. Weekly Schedule. Provide separate schedules for each day of the week. Each of these schedules should include the capability for start, stop, optimal start, optimal stop, and night economizer. Each schedule may consist of up to 10 events. When a group of objects are scheduled together, provide the capability to adjust the start and stop times for each member.
 - 2. Exception Schedules. Provide the ability for the operator to designate any day of the year as an exception schedule. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by the standard schedule for that day of the week.
 - 3. Holiday Schedules. Provide the capability for the operator to define up to 99 special or holiday schedules. These schedules may be placed on the scheduling calendar and will be repeated each year. The operator shall be able to define the length of each holiday period.
- D. System Coordination. Provide a standard application for the proper coordination of equipment. This application shall provide the operator with a method of grouping together equipment based on function and location. This group may then be used for scheduling and other applications.
- E. Binary Alarms. Each binary object shall be set to alarm based on the operator-specified state. Provide the capability to automatically and manually disable alarming.
- F. Analog Alarms. Each analog object shall have both high and low alarm limits. Alarming must be able to be automatically and manually disabled.
- G. Alarm Reporting. The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the appropriate workstations based on time and other conditions. An alarm shall be able to start programs, print, be logged in the event log, generate custom messages, and display graphics.
- H. Remote Communication. The system shall have the ability to dial out in the event of an alarm using BACnet PTP. Receivers shall be BACnet workstations.
- I. Maintenance Management. The system shall monitor equipment status and generate maintenance messages based upon user-designated run-time, starts, and/or calendar date limits.
- J. Sequencing. Provide application software based upon the sequences of operation specified to properly sequence chillers, boilers, and pumps.
- K. PID Control. A PID (proportional-integral-derivative) algorithm with direct or reverse action and antiwindup shall be supplied. The algorithm shall calculate a time-varying analog value that is used to position an output or stage a series of outputs. The controlled variable, set point, and PID gains shall be user-selectable.
- L. Anti-Short Cycling. All binary output objects shall be protected from short cycling. This feature shall allow minimum on-time and off-time to be selected.

- M. On/Off Control with Differential. Provide an algorithm that allows a binary output to be cycled based on a controlled variable and set point. The algorithm shall be direct-acting or reverse-acting and incorporate an adjustable differential.
- N. Run-Time Totalization. Provide software to totalize run-times for all binary input objects. A high run-time alarm shall be assigned, if required, by the operator.

2.5 BUILDING CONTROLLERS

- A. General. Provide an adequate number of building controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these panels shall meet the following requirements.
 - 1. The Building Automation System shall be composed of one or more independent, stand-alone, microprocessor-based building controllers to manage the global strategies described in the System Software section.
 - 2. The building controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 3. Data shall be shared between networked building controllers.
 - 4. The operating system of the building controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 5. Controllers that perform scheduling shall have a real-time clock.
 - 6. The building controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall
 - a. Assume a predetermined failure mode,
 - b. Generate an alarm notification.
 - 7. The Building Controller shall communicate with other BACnet devices on the internetwork using the Read (Execute and Initiate) and Write (Execute and Initiate) Property services as defined in Clauses 15.5 and 15.9, respectively, of ANSI/ASHRAE Standard 135-2016.

B. Communication.

- 1. Each building controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
- 2. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- C. Environment. Controller hardware shall be suitable for the anticipated ambient conditions.
 - 1. Controllers used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at $\Box 40^{\circ}\text{C}$ to 65°C ($\Box 40^{\circ}\text{F}$ to 150°F).
 - 2. Controllers used in conditioned space shall be mounted in dust-proof enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).
- D. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- E. Memory. The building controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.

F. Immunity to power and noise. Controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

2.6 CUSTOM APPLICATION CONTROLLERS

- A. General. Provide an adequate number of Custom Application Controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these panels shall meet the following requirements.
 - 1. The custom application controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. Data shall be shared between networked custom application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The custom application controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall
 - a. assume a predetermined failure mode and
 - b. generate an alarm notification.
 - 6. The custom application controller shall communicate with other BACnet devices on the internetwork using the Read (Execute and Initiate) and Write (Execute and Initiate) Property services as defined in Clauses 15.5 and 15.9, respectively, of ANSI/ASHRAE Standard 135-2016.

B. Communication.

- 1. Each custom application controller shall reside on a BACnet network using the MS/TP Data Link/Physical layer protocol.
- 2. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- C. Environment. Controller hardware shall be suitable for the anticipated ambient conditions.
 - 1. Controllers used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at □40°C to 65°C (□40°F to 150°F).
 - 2. Controllers used in conditioned space shall be mounted in dustproof enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).
- D. Keypad. A local keypad and display shall be provided. The keypad shall be provided for interrogating and editing data. An optional system security password shall be available to prevent unauthorized use of the keypad and display.
- E. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- F. Memory. The custom application controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.

Project No: 25336

Morrissey Engineering Inc.

G. Immunity to power and noise. Controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

2.7 APPLICATION SPECIFIC CONTROLLERS

- A. General. Application specific controllers (ASCs) are microprocessor-based DDC controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. They are not fully user-programmable but are customized for operation within the confines of the equipment they are designed to serve. Application specific controllers shall communicate with other BACnet devices on the internetwork using the Read (Execute) Property service as defined in Clause 15.5 of ANSI/ASHRAE Standard 135-2016.
 - 1. Each ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each ASC will contain sufficient I/O capacity to control the target system.

B. Communication.

- 1. The controller shall reside on a BACnet network using the MS/TP Data Link/Physical layer protocol. Each network of controllers shall be connected to one building controller.
- 2. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- C. Environment. The hardware shall be suitable for the anticipated ambient conditions.
 - 1. Controllers used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at $\Box 40^{\circ}\text{C}$ to 65°C ($\Box 40^{\circ}\text{F}$ to 150°F).
 - 2. Controllers used in conditioned space shall be mounted in dust-proof enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).
- D. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- E. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- F. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- G. Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.

2.8 INPUT/OUTPUT INTERFACE

- A. Hardwired inputs and outputs may tie into the system through building, custom application, or application specific controllers.
- B. All input points and output points shall be protected such that shorting of the point to itself, to another point, or to ground will cause no damage to the controller. All input and output points shall be protected

- from voltage up to 24 V of any duration, such that contact with this voltage will cause no damage to the controller.
- C. Binary inputs shall allow the monitoring of On/Off signals from remote devices. The binary inputs shall provide a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against the effects of contact bounce and noise. Binary inputs shall sense "dry contact" closure without external power (other than that provided by the controller) being applied.
- D. Pulse accumulation input objects. This type of object shall conform to all the requirements of binary input objects and also accept up to 10 pulses per second for pulse accumulation.
- E. Analog inputs shall allow the monitoring of low-voltage (0 to 10 VDC), current (4 to 20 mA), or resistance signals (thermistor, RTD). Analog inputs shall be compatible with—and field configurable to—commonly available sensing devices.
- F. Tri-State Outputs. Provide tri-state outputs (two coordinated binary outputs) for control of three-point floating type electronic actuators without feedback. Use of three-point floating devices shall be limited to zone control and terminal unit control applications (VAV terminal units, duct-mounted heating coils, zone dampers, radiation, etc.).
- G. Input/Output points shall be the universal type, i.e., controller input or output may be designated (in software) as either a binary or analog type point with appropriate properties. Application specific controllers are exempted from this requirement.
- H. System Object Capacity. The system size shall be expandable to at least twice the number of input/ output objects required for this project. Additional controllers (along with associated devices and wiring) shall be all that is necessary to achieve this capacity requirement. The operator interfaces installed for this project shall not require any hardware additions or software revisions in order to expand the system.

2.9 POWER SUPPLIES AND LINE FILTERING

- A. Control transformers shall be UL listed. Furnish Class 2 current-limiting type or furnish over-current protection in both primary and secondary circuits for Class 2 service in accordance with NEC requirements. Limit connected loads to 80% of rated capacity.
 - 1. DC power supply output shall match output current and voltage requirements. Unit shall be full-wave rectifier type with output ripple of 5.0 mV maximum peak-to-peak. Regulation shall be 1.0% line and load combined, with 100-microsecond response time for 50% load changes. Unit shall have built-in over-voltage and over-current protection and shall be able to withstand a 150% current overload for at least three seconds without trip-out or failure.
 - a. Unit shall operate between 0°C and 50°C (32°F and 120°F). EM/RF shall meet FCC Class B and VDE 0871 for Class B and MIL-STD 810C for shock and vibration.
 - b. Line voltage units shall be UL recognized and CSA approved.

B. Power line filtering.

- 1. Provide transient voltage and surge suppression for all workstations, network server and controllers either internally or as an external component. Surge protection shall have the following at a minimum:
 - a. Dielectric strength of 1000 volts minimum
 - b. Response time of 10 nanoseconds or less
 - c. Transverse mode noise attenuation of 65 dB or greater

Project No: 25336

Morrissey Engineering Inc.

d. Common mode noise attenuation of 150 dB or better at 40 Hz to 100 Hz

2.10 ACTUATORS

- A. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. Manufacturers:
 - a. Belimo Controls (USA), Inc.
 - b. Honeywell
 - c. Johnson Controls
 - d. Siemens Controls
 - 2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 - 3. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 - e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 - f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
 - g. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.
 - 4. Coupling: V-bolt and V-shaped, toothed cradle.
 - 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 - 6. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
 - 7. Power Requirements (Two-Position Spring Return): 24 VAC.
 - 8. Power Requirements (Modulating): Maximum 10 VA at 24-VAC or 8 W at 24-VDC.
 - 9. Proportional Signal: 2- to 10-VDC or 4 to 20 mA, and 2- to 10-VDC position feedback signal.
 - 10. Temperature Rating: Minus 20 to plus 122 deg F.
 - 11. Temperature Rating (Smoke Dampers): Minus 20 to plus 250 deg F.
 - 12. Exterior applications: Housing shall be NEMA 4 rated and provided with an anti-condensation heater.
 - 13. Run Time: Stroke dampers from fully closed to fully open according to the following:

a. Two position normal serviceb. Modulating normal service150 seconds

2.11 CONTROL VALVES

A. Manufacturers:

- 1. Belimo Aircontrols (USA), Inc.
- 2. Honeywell
- 3. Johnson Controls
- 4. Schneider Electric
- 5. Siemens Controls

B. Control Valves: General

- 1. All chilled water and hot water shall meet, at minimum, ANSI Class 150 ratings.
- 2. The entire valve (body and trim) shall have a pressure rating of at least 50% greater than the system pressure it is exposed to.
- 3. Contractor shall certify that the valve materials are appropriate for the application.
- 4. Valves of similar types shall be by the same manufacturer.
- 5. Contractor shall verify and certify that the materials of construction of the pipe, weld, flange, bolts and valve will not cause any galvanic corrosion.
- 6. Two position valves shall be full line size.
- 7. The manufacturer shall warrant all components for a period of 5 years from the date of production, with the first two years unconditional (except as noted).
- 8. Three way diverting valves shall be full line size.
- C. Hydronic system pressure dependent valves shall have the following characteristics:
 - 1. NPS 2 and Smaller: Ball valve, brass body with nickel plated brass ball and stem, union and threaded ends. Provide with fiberglass reinforced Teflon seats and flow characterizing disc. Configured with two or three ports as indicated.
 - a. Rating: 600 psig static and temperatures not to exceed 250 deg F.
 - b. Sizing:
 - 1) Two-Position: Line size or size using a pressure differential of 1psi.
 - 2) Modulating: 5-psig or twice the load pressure drop, whichever is greater.
 - c. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
 - 2. NPS 2-½ and Larger: Globe valve, ANSI Class 125 cast iron body, stainless steel stem, bronze plug, bronze seat, and a TFE V-ring packing.
 - a. Sizing:
 - 1) Two-Position: Line size or size using a pressure differential of 1psi.
 - 2) Modulating: 5-psig or twice the load pressure drop, whichever is greater.
 - b. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
 - c. Close-off Pressure Rating: Combination of actuator and trim shall provide minimum close off pressure rating of 150% of total system head pressure for 2-way valves and 150% of the design pressure differential across the 3-way valves.
 - d. 2- and 3-way globe valves shall be used only if characterized control valves do not fit the sizing criteria or application.
 - 3. Butterfly Valves: 200-psig maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 - a. Body Style: Lug. Semi-lug and wafer valves are not acceptable.
 - b. Disc Type: 304 stainless steel
 - c. Sizing: 5-psig maximum pressure drop at design flow rate. Size for the design flow with the disc in a 60° open-position with the design velocity less than 12 feet per second.
 - d. Close-off Pressure Rating: 200 psi bubble tight shutoff.

2.12 ELECTRONIC SENSORS

A. Temperature sensors.

1. Manufacturers:

- a. BEC Controls Corporation
- b. Honeywell
- c. I.T.M. Instruments Inc.
- d. MAMAC Systems, Inc.
- e. Precon
- f. RDF Corporation
- g. TAC
- h. Veris Industries

2. Accuracy:

- a. Thermistor sensors: Plus or minus 0.5 deg F at calibration point.
- b. RTDs and transmitters: Plus or minus 0.2 percent at calibration point.
- 3. Wire: Twisted, shielded-pair cable.
- 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.
- 5. Averaging Elements in Ducts: minimum 72" long or (one linear foot per square foot) of duct cross-sectional area, whichever is greater. Use where prone to temperature stratification or where ducts are larger than 10 sq. ft.
- 6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
- 7. Room Sensors:
 - a. Set-Point Adjustment and Indication: Yes.
 - b. Room Temperature Indication: Yes.
 - c. Occupancy override: Yes.
 - d. Color: Color from manufacturer's standard.
 - e. Thermostat Guards: Locking; heavy-duty, transparent plastic; mounted on separate base or Metal wire, tamperproof. Provide guards in gymnasium, wrestling room, and locker rooms.
 - f. Insulating Bases: For sensors located on exterior walls.
- 8. Outside-Air Sensors: Install sensors on north wall, shielded from direct sunlight.

B. Humidity sensors

- 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. VAISALA.
 - e. Veris Industries
- 2. Accuracy: +/- 2 percent full range with linear output.
- 3. Duct and Room Sensor Range: 20 to 80 percent relative humidity.
- 4. Room Sensor Cover Construction:
 - a. Set-Point Adjustment: None.

- b. Set-Point Indication: None.
- c. Color: Color from manufacturer's standard.
- 5. Duct and Outside-Air Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.
- 6. Duct sensors shall be provided with a sampling chamber.
- 7. Humidity sensor's drift shall not exceed 1% of full scale per year.

C. Pressure transmitters/transducers

1. Manufacturers:

- a. BEC Controls Corporation.
- b. General Eastern Instruments.
- c. MAMAC Systems, Inc.
- d. VAISALA.
- e. Veris Industries.
- 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 - b. Output: 4 to 20 mA or 0 to 10 VDC
 - c. Building Static-Pressure Range: -0.25 to 0.25-inch wg. Exterior static pressure references shall utilize a dampening pot. Dampening pot shall be manufactured by Dwyer, Model A-306 or approved equal. Pipe the interior static pressure reference port to a location behind a thermostat cover or the ceiling of the main building entrance.
 - d. Duct Static-Pressure Range: 0- to 5-inch wg
- 3. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA or 0 to 10 VDC.
- 4. Transducer shall have linear output signal. Zero and span shall be field adjustable.
- 5. Transducer sensing elements shall withstand continuous operating conditions of positive or negative pressure 50% greater than calibrated span without damage.

2.13 AUXILIARY CONTROL DEVICES

A. Binary Temperature Devices

- 1. Low-voltage space thermostat shall be 24 V, bimetal-operated, mercury-switch type, with either adjustable or fixed anticipation heater, concealed setpoint adjustment, 13°C to 30°C (55°F to 85°F) set point range, 1°C (2°F) maximum differential, and vented ABS plastic cover.
- 2. Line-voltage space thermostat shall be bimetal-actuated, open contact type, or bellows-actuated, enclosed, snap-switch type or equivalent solid-state type, with heat anticipator, UL listed for electrical rating, concealed setpoint adjustment, 13°C to 30°C (55°F to 85°F) setpoint range, 1°C (2°F) maximum differential, and vented ABS plastic cover.
- 3. Low-Limit Thermostat: Snap-acting, double-pole, manual-reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 - a. Bulb Length: Minimum 20 feet.
 - b. Quantity: One thermostat for every 20 sq. ft. of coil surface. Provide suitable supports as recommended by manufacturer.
 - c. Interlock to the associated fan so that fan will shut down when HOA switch is in Hand or Auto position.

B. Relays

- 1. Control relays shall be UL listed plug-in type with dust cover and <u>LED "energized" indicator</u>. Contact rating, configuration, and coil voltage shall be suitable for application.
- 2. Time delay relays shall be UL listed solid-state plug-in type with adjustable time delay. Delay shall be adjustable $\pm 200\%$ (minimum) from set point shown on plans. Contact rating, configuration, and coil voltage shall be suitable for application. Provide NEMA 1 enclosure when not installed in local control panel.

C. Current switches

1. Current-operated switches shall be self-powered, solid-state with adjustable trip current. The switches shall be selected to match the current of the application and output requirements of the DDC system.

D. Current transmitters

- 1. AC current transmitters shall be the self-powered, combination split-core current transformer type with built-in rectifier and high-gain servo amplifier with 4 to 20 mA two-wire output. Unit ranges shall be 10 A, 20 A, 50 A, 100 A, 150 A, and 200 A full scale, with internal zero and span adjustment and $\pm 1\%$ full-scale accuracy at 500 ohm maximum burden.
- 2. Transmitter shall meet or exceed ANSI/ISA S50.1 requirements and shall be UL/CSA Recognized.
- 3. Unit shall be split-core type for clamp-on installation on existing wiring.

E. Current transformers

- 1. AC current transformers shall be UL/CSA Recognized and completely encased (except for terminals) in approved plastic material.
- 2. Transformers shall be available in various current ratios and shall be selected for $\pm 1\%$ accuracy at 5 A full-scale output.
- 3. Transformers shall be fixed-core or split-core type for installation on new or existing wiring, respectively.

F. Voltage transmitters

- 1. AC voltage transmitters shall be self-powered single-loop (two-wire) type, 4 to 20 mA output with zero and span adjustment.
- 2. Ranges shall include 100 to 130 VAC, 200 to 250 VAC, 250 to 330 VAC, and 400 to 600 VAC full-scale, adjustable, with $\pm 1\%$ full-scale accuracy with 500 ohm maximum burden.
- Transmitters shall be UL/CSA Recognized at 600 VAC rating and meet or exceed ANSI/ISA S50.1 requirements.

G. Voltage transformers

- 1. AC voltage transformers shall be UL/CSA Recognized, 600 VAC rated, complete with built-in fuse protection.
- 2. Transformers shall be suitable for ambient temperatures of 4° C to 55° C (40° F to 130° F) and shall provide $\pm 0.5\%$ accuracy at 24 VAC and a 5 VA load.
- 3. Windings (except for terminals) shall be completely enclosed with metal or plastic material.

2.14 LOCAL CONTROL PANELS

- A. All indoor control cabinets shall be fully enclosed NEMA 1 construction with (hinged door) key-lock latch and removable subpanels. A single key shall be common to all field panels and subpanels.
- B. Interconnections between internal and face-mounted devices shall be prewired with color-coded stranded conductors neatly installed in plastic troughs and/or tie-wrapped. Terminals for field connections shall be UL listed for 600 volt service, individually identified per control/ interlock drawings, with adequate clearance for field wiring. Control terminations for field connection shall be individually identified per control drawings.
- C. Provide ON/OFF power switch with overcurrent protection for control power sources to each local panel.

2.15 CONTROL RACEWAYS

- A. EMT: ANSI C80.3, zinc-coated steel, with steel or cast set-screw or compression fittings.
- B. FMC: Zinc-coated steel.
- C. Raceway Fittings: Specifically designed for the raceway type with which used.

2.16 CONTROL CONDUCTORS

- A. Conductors, No. 10 AWG and Smaller: Solid or stranded copper.
- B. Conductors, Larger Than No. 10 AWG: Stranded copper.
- C. Insulation: Thermoplastic, rated at 75 deg C minimum.
- D. Wire Connectors and Splices: Units of size, ampacity rating, material, type, and class suitable for service indicated.

2.17 LOW VOLTAGE CONDUCTORS

- A. Provide conductors including the following:
 - 1. Control panel to control panel Systimax (or equal) CAT 5E plenum cable or manufactures recommendation
 - 2. Control panel to net or sub LAN Controller Belden RS 485 shielded cable or manufacturer's recommendation.
 - 3. Controller or panel to controlled devices Belden (or equal) 2 or 3 wire shielded cable or manufacturers recommendation.
 - 4. All wiring shall be plenum rated unless installed in conduit.
 - 5. Utilize riser rated cable if applicable.

2.18 RACEWAY AND CABLE SUPPORTING DEVICES

- A. Material: Cold-formed steel, with corrosion-resistant coating acceptable to authorities having jurisdiction.
- B. Metal Items for Use Outdoors or in Damp Locations: Hot-dip galvanized steel.

- C. Slotted-Steel Channel Supports: Flange edges turned toward web, and 9/16-inch diameter slotted holes at a maximum of 2 inches o.c., in webs.
- D. Raceway and Cable Supports: Manufactured clevis hangers, riser clamps, straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or click-type hangers.
- E. Pipe Sleeves: ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, plain ends.
- F. Expansion Anchors: Carbon-steel wedge or sleeve type.
- G. Toggle Bolts: All-steel springhead type.
- H. Powder-Driven Threaded Studs: Heat-treated steel.

2.19 BOXES

- A. Hollow wall and ceiling spaces: Outlet boxes for concealed applications shall be 4" square with single or multiple gang plaster ring in round or square configuration to match the device being installed. Depth of ring shall be selected so that face of ring is recessed back from face of finished surface by approximately 1/8".
- B. Masonry walls: Outlet boxes in masonry walls shall be 4" square with single or multiple gang masonry rings with square edges. Masonry boxes may also be used where 4" square boxes are impractical. Slush boxes in place to prevent movement within walls. Flush mounted boxes and conduit are to be used unless otherwise indicated.
- C. Exposed Exterior boxes: Where exposed boxes are required, they shall be the cast type with threaded hubs and gasketed covers. Use of these boxes is by approval only. Flush mounted boxes and conduit are to be used unless otherwise indicated.
- D. Interior junction boxes: Interior junction boxes shall be 4" square minimum with knock outs as required. Provide a flat steel coverplate.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. The project plans shall be thoroughly examined for control device and equipment locations. Any discrepancies, conflicts, or omissions shall be reported to the architect/engineer for resolution before rough-in work is started.
- B. The contractor shall inspect the site to verify that equipment may be installed as shown. Any discrepancies, conflicts, or omissions shall be reported to the engineer for resolution before rough-in work is started.
- C. The contractor shall examine the drawings and specifications for other parts of the work. If head room or space conditions appear inadequate—or if any discrepancies occur between the plans and the contractor's work and the plans and the work of others—the contractor shall report these discrepancies to the engineer and shall obtain written instructions for any changes necessary to accommodate the contractor's work with the work of others. Any changes in the work covered by this specification made necessary by the failure or neglect of the contractor to report such discrepancies shall be made by—and at the expense of—this contractor.

Project No: 25336

Morrissey Engineering Inc.

3.2 PROTECTION

- A. The contractor shall protect all work and material from damage by his/her work or employees and shall be liable for all damage thus caused.
- B. The contractor shall be responsible for his/her work and equipment until finally inspected, tested, and accepted. The contractor shall protect any material that is not immediately installed. The contractor shall close all open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

3.3 COORDINATION

A. Site

- 1. Where the mechanical work will be installed in close proximity to, or will interfere with, work of other trades, the contractor shall assist in working out space conditions to make a satisfactory adjustment. If the contractor installs his/her work before coordinating with other trades, so as to cause any interference with work of other trades, the contractor shall make the necessary changes in his/her work to correct the condition without extra charge.
- 2. Coordinate and schedule work with all other work in the same area, or with work that is dependent upon other work, to facilitate mutual progress.

B. Test and Balance

- 1. The contractor shall furnish a single set of all tools necessary to interface to the control system for test and balance purposes.
- 2. The contractor shall provide training in the use of these tools. This training will be planned for a minimum of 4 hours.
- 3. In addition, the contractor shall provide a qualified technician to assist in the test and balance process, until the first 20 terminal units are balanced.
- 4. The tools used during the test and balance process will be returned at the completion of the testing and balancing.

C. Life Safety

- 1. Duct smoke detectors required for air handler shutdown are supplied under Division 26 of this specification. The contractor shall interlock smoke detectors to air handlers for shutdown as described in 230993, "Sequences of Operation."
- 2. Smoke dampers and actuators required for duct smoke isolation are provided under a Section of Division 26. The contractor shall interlock these dampers to the air handlers as described in 230993, "Sequences of Operation."
- 3. Fire/smoke dampers and actuators required for fire rated walls are provided under another Section of Division 23. Control of these dampers shall be by Division 26. The contractor shall provide control air to the dampers.
- D. Coordination with controls specified in other sections or divisions. Other sections and/or divisions of this specification include controls and control devices that are to be part of or interfaced to the control system specified in this section. These controls shall be integrated into the system and coordinated by the contractor as follows:
 - 1. All communication media and equipment shall be provided as specified in Part 2, "Communication" of this specification.
 - 2. Each supplier of a controls product is responsible for the configuration, programming, start-up, and testing of that product to meet the sequences of operation described in this section.

- 3. The Contractor shall coordinate and resolve any incompatibility issues that arise between the control products provided under this section and those provided under other sections or divisions of this specification.
- 4. The contractor is responsible for providing all controls described in the contract documents regardless of where within the contract documents these controls are described.
- 5. The contractor is responsible for the interface of control products provided by multiple suppliers regardless of where this interface is described within the contract documents.

3.4 GENERAL WORKMANSHIP

- A. Install equipment, piping, and wiring/raceway parallel to building lines (i.e., horizontal, vertical, and parallel to walls) wherever possible.
- B. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- C. Install all equipment in readily accessible locations as defined by Chapter 1, Article 100, Part A of the National Electrical Code (NEC).
- D. Verify integrity of all wiring to ensure continuity and freedom from shorts and grounds.
- E. All equipment, installation, and wiring shall comply with acceptable industry specifications and standards for performance, reliability, and compatibility and be executed in strict adherence to local codes and standard practices.

3.5 FIELD QUALITY CONTROL

- A. All work, materials, and equipment shall comply with the rules and regulations of applicable local, state, and federal codes and ordinances as identified in Part 1 of this specification.
- B. Contractor shall continually monitor the field installation for code compliance and quality of workmanship.
- C. Contractor shall have work inspected by local and/ or state authorities having jurisdiction over the work.

3.6 EXISTING EQUIPMENT

- A. Local Control Panels: The contractor may reuse any existing local control panel to locate new equipment. All redundant equipment within these panels must be removed. Panel face cover must be patched to fill all holes caused by removal of unused equipment or replaced with new.
- B. Unless otherwise directed, the contractor is not responsible for the repairs or replacement of existing energy equipment and systems, valves, dampers, or actuators. Should the contractor find existing equipment that requires maintenance, the engineer is to be notified immediately.
- C. Temperature Sensor Wells: The contractor may reuse any existing wells in piping for temperature sensors. These wells shall be modified as required for proper fit of new sensors.
- D. Indicator Gauges: Where these devices remain and are not removed, they must be made operational and recalibrated to ensure reasonable accuracy.
- E. Install control panels where shown.

Project No: 25336

Morrissey Engineering Inc.

F. Patch holes and finish to match existing walls.

3.7 WIRING

- A. All control and interlock wiring shall comply with national and local electrical codes and Division 26 of this specification. Where the requirements of this section differ from those in Division 26, the requirements of this section shall take precedence.
- B. All NEC Class 1 (line voltage) wiring shall be UL Listed in approved raceway according to NEC and Division 26 requirements.
- C. All low-voltage wiring shall meet NEC Class 2 requirements. (Low-voltage power circuits shall be subfused when required to meet Class 2 current limit.)
- D. Where NEC Class 2 (current-limited) wires are in concealed and accessible locations, including ceiling return air plenums, approved cables not in raceway may be used provided that cables are UL Listed for the intended application. For example, cables used in ceiling plenums shall be UL Listed specifically for that purpose.
- E. All wiring in mechanical, electrical, or service rooms—or where subject to mechanical damage—shall be installed in raceway.
- F. Do not install Class 2 wiring in raceway containing Class 1 wiring. Boxes and panels containing high-voltage wiring and equipment may not be used for low-voltage wiring except for the purpose of interfacing the two (e.g., relays and transformers).
- G. Do not install wiring in raceway containing tubing.
- H. Where Class 2 wiring is run exposed, wiring is to be run parallel along a surface or perpendicular to it and neatly tied at 10 ft intervals.
- I. Where plenum cables are used without raceway, they shall be supported from or anchored to structural members. Cables shall not be supported by or anchored to ductwork, electrical raceways, piping, or ceiling suspension systems.
- J. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.
- K. Maximum allowable voltage for control wiring shall be 120 V. If only higher voltages are available, the contractor shall provide step-down transformers.
- L. All wiring shall be installed as continuous lengths, with <u>no splices</u> permitted between termination points.
- M. Install plenum wiring in sleeves where it passes through walls and floors. Maintain fire rating at all penetrations.
- N. Size of raceway and size and type of wire shall be the responsibility of the contractor, in keeping with the manufacturer's recommendations and NEC requirements, except as noted elsewhere.
- O. Include one pull string in each raceway 1 in. or larger.
- P. Use coded conductors throughout with conductors of different colors.

- Q. Control and status relays are to be located in designated enclosures only. These enclosures include packaged equipment control panel enclosures unless they also contain Class 1 starters.
- R. Conceal all raceways, except within mechanical, electrical, or service rooms. Install raceway to maintain a minimum clearance of 6 in. from high-temperature equipment (e.g., steam pipes or flues).
- S. Secure raceways with raceway clamps fastened to the structure and spaced according to code requirements. Raceways and pull boxes may not be hung on flexible duct strap or tie rods. Raceways may not be run on or attached to ductwork.
- T. Adhere to this specification's Division 26 requirements where raceway crosses building expansion joints.
- U. Install insulated bushings on all raceway ends and openings to enclosures. Seal top end of all vertical raceways.
- V. The Contractor shall terminate all control and/or interlock wiring and shall maintain updated (as-built) wiring diagrams with terminations identified at the job site.
- W. Flexible metal raceways and liquid-tight, flexible metal raceways shall not exceed 3 ft in length and shall be supported at each end. Flexible metal raceway less than ½ in. electrical trade size shall not be used. In areas exposed to moisture, including chiller and boiler rooms, liquid-tight, flexible metal raceways shall be used.
- X. Raceway must be rigidly installed, adequately supported, properly reamed at both ends, and left clean and free of obstructions. Raceway sections shall be joined with couplings (according to code). Terminations must be made with fittings at boxes, and ends not terminating in boxes shall have bushings installed.

3.8 COMMUNICATION WIRING

- A. The contractor shall adhere to the items listed in the "Wiring" article in Part 3 of the specification.
- B. All cabling shall be installed in a neat and workmanlike manner. Follow manufacturer's installation recommendations for all communication cabling.
- C. Do not install communication wiring in raceway and enclosures containing Class 1 or other Class 2 wiring.
- D. Maximum pulling, tension, and bend radius for cable installation, as specified by the cable manufacturer, shall not be exceeded during installation.
- E. Contractor shall verify the integrity of the entire network following the cable installation. Use appropriate test measures for each particular cable.
- F. When a cable enters or exits a building, a lightning arrestor must be installed between the lines and ground. The lighting arrestor shall be installed according to the manufacturer's instructions.
- G. All runs of communication wiring shall be unspliced length when that length is commercially available.
- H. All communication wiring shall be labeled to indicate origination and destination data.
- I. Grounding of coaxial cable shall be in accordance with NEC regulations article on "Communications Circuits, Cable, and Protector Grounding."

Project No: 25336

Morrissey Engineering Inc.

3.9 INSTALLATION OF SENSORS

- A. Install sensors in accordance with the manufacturer's recommendations.
- B. Mount sensors rigidly and adequately for the environment within which the sensor operates.
- C. Room temperature sensors shall be installed on concealed junction boxes properly supported by the wall framing.
- D. All wires attached to sensors shall be air sealed in their raceways or in the wall to stop air transmitted from other areas affecting sensor readings.
- E. Sensors used in mixing plenums and hot and cold decks shall be of the averaging type. Averaging sensors shall be installed in a serpentine manner vertically across the duct. Each bend shall be supported with a capillary clip.
- F. Low-limit sensors used in mixing plenums shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- G. Differential air static pressure.
 - 1. Supply Duct Static Pressure: Pipe the high-pressure tap to the duct using a pitot tube. Pipe the low-pressure port to a tee in the high-pressure tap tubing of the corresponding building static pressure sensor (if applicable) or to the location of the duct high-pressure tap and leave open to the plenum.
 - 2. Return Duct Static Pressure: Pipe the high-pressure tap to the duct using a pitot tube. Pipe the low-pressure port to a tee in the low-pressure tap tubing of the corresponding building static pressure sensor.
 - 3. The piping to the pressure ports on all pressure transducers shall contain a capped test port located adjacent to the transducer.
 - 4. All pressure transducers, other than those controlling VAV boxes, shall be located in field device panels, not on the equipment monitored or on ductwork. Mount transducers in a location accessible for service without use of ladders or special equipment.
 - 5. All air and water differential pressure sensors shall have gauge tees mounted adjacent to the taps. Water gauges shall also have shutoff valves installed before the tee.

3.10 ACTUATORS

- A. Mount and link control damper actuators according to manufacturer's instructions.
 - 1. To compress seals when spring-return actuators are used on normally closed dampers, power actuator to approximately 5° open position, manually close the damper, and then tighten the linkage.
 - 2. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed positions.
 - 3. Provide all mounting hardware and linkages for actuator installation.

B. Electric/Electronic

1. Dampers: Actuators shall be direct-mounted on damper shaft or jackshaft unless shown as a linkage installation. For low-leakage dampers with seals, the actuator shall be mounted with a minimum 5° available for tightening the damper seals. Actuators shall be mounted following manufacturer's recommendations.

2. Valves: Actuators shall be connected to valves with adapters approved by the actuator manufacturer. Actuators and adapters shall be mounted following the actuator manufacturer's recommendations.

3.11 IDENTIFICATION OF HARDWARE AND WIRING

- A. All wiring and cabling, including that within factory-fabricated panels, shall be labeled at each end within 5 cm (2 in.) of termination with the DDC address or termination number.
- B. Permanently label or code each point of field terminal strips to show the instrument or item served.
- C. Identify control panels and enclosures with minimum 0.5" high letters on laminated plastic nameplates.
 - 1. Maintain consistency throughout project.
 - 2. Indicated and cross referenced in the record documentation.
- D. Identify all other control components with permanent labels. All plug-in components shall be labeled such that removal of the component does not remove the label.
- E. Identify room sensors relating to terminal box or valves with nameplates.
- F. Manufacturers' nameplates and UL or CSA labels are to be visible and legible after equipment is installed.
- G. Identifiers shall match record documents.

3.12 CONTROLLERS

- A. Provide a separate controller for each AHU or other HVAC system. A DDC controller may control more than one system provided that all points associated with the system are assigned to the same DDC controller. Points used for control loop reset, such as outside air or space temperature, are exempt from this requirement.
- B. Building Controllers and Custom Application Controllers shall be selected to provide a minimum of 15% spare I/O point capacity for each point type found at each location. If input points are not universal, 15% of each type is required. If outputs are not universal, 15% of each type is required. A minimum of one spare is required for each type of point used.
 - 1. Future use of spare capacity shall require providing the field device, field wiring, point database definition, and custom software. No additional controller boards or point modules shall be required to implement use of these spare points.

3.13 PROGRAMMING

- A. Provide sufficient internal memory for the specified sequences of operation and trend logging. There shall be a minimum of 25% of available memory free for future use.
- B. Point Naming: System point names shall be modular in design, allowing easy operator interface without the use of a written point index.
- C. Software Programming

Project No: 25336

Morrissey Engineering Inc.

1. Provide programming for the system and adhere to the sequences of operation provided. All other system programming necessary for the operation of the system, but not specified in this document, also shall be provided by the contractor. Imbed into the control program sufficient comment statements to clearly describe each section of the program. The comment statements shall reflect the language used in the sequences of operation.

D. Operator Interface

- 1. Standard graphics—Provide graphics for all mechanical systems and floor plans of the building. This includes each chilled water system, hot water system, chiller, boiler, air handler, and all terminal equipment. Point information on the graphic displays shall dynamically update. Show on each graphic all input and output points for the system. Also show relevant calculated points such as set points.
- 2. Show terminal equipment information on a "graphic" summary table. Provide dynamic information for each point shown.
- 3. The contractor shall provide all the labor necessary to install, initialize, start up, and troubleshoot all operator interface software and its functions as described in this section. This includes any operating system software, the operator interface database, and any third-party software installation and integration required for successful operation of the operator interface.

3.14 CONTROL SYSTEM CHECKOUT AND TESTING

- A. Start-up Testing: All testing listed in this article shall be performed by the contractor and shall make up part of the necessary verification of an operating control system. This testing shall be completed before the owner's representative is notified of the system demonstration.
 - 1. The contractor shall furnish all labor and test apparatus required to calibrate and prepare for service of all instruments, controls, and accessory equipment furnished under this specification.
 - 2. Verify that all control wiring is properly connected and free of all shorts and ground faults. Verify that terminations are tight.
 - 3. Enable the control systems and verify calibration of all input devices individually. Perform calibration procedures according to manufacturers' recommendations.
 - 4. Verify that all binary output devices (relays, solenoid valves, two-position actuators and control valves, magnetic starters, etc.) operate properly and that the normal positions are correct.
 - 5. Verify that all analog output devices (I/Ps, actuators, etc.) are functional, that start and span are correct, and that direction and normal positions are correct. The contractor shall check all control valves and automatic dampers to ensure proper action and closure. The contractor shall make any necessary adjustments to valve stem and damper blade travel.
 - 6. Verify that the system operation adheres to the sequences of operation. Simulate and observe all modes of operation by overriding and varying inputs and schedules. Tune all DDC loops and optimum start/stop routines.
 - 7. Alarms and Interlocks:
 - a. Check each alarm separately by including an appropriate signal at a value that will trip the alarm.
 - b. Interlocks shall be tripped using field contacts to check the logic, as well as to ensure that the fail-safe condition for all actuators is in the proper direction.
 - c. Interlock actions shall be tested by simulating alarm conditions to check the initiating value of the variable and interlock action.

3.15 CONTROL SYSTEM DEMONSTRATION AND ACCEPTANCE

A. Demonstration

- 1. Prior to acceptance, the control system shall undergo a series of performance tests to verify operation and compliance with this specification. These tests shall occur after the Contractor has completed the installation, started up the system, and performed his/her own tests.
- 2. The tests described in this section are to be performed in addition to the tests that the contractor performs as a necessary part of the installation, start-up, and debugging process and as specified in the "Control System Checkout and Testing" article in Part 3 of this specification. The engineer will be present to observe and review these tests. The engineer shall be notified at least 10 days in advance of the start of the testing procedures.
- 3. The demonstration process shall follow that approved in Part 1, "Submittals." The approved checklists and forms shall be completed for all systems as part of the demonstration.
- 4. The contractor shall provide at least two persons equipped with two-way communication and shall demonstrate actual field operation of each control and sensing point for all modes of operation including day, night, occupied, unoccupied, fire/smoke alarm, seasonal changeover, and power failure modes. The purpose is to demonstrate the calibration, response, and action of every point and system. Any test equipment required to prove the proper operation shall be provided by and operated by the contractor.
- 5. As each control input and output is checked, a log shall be completed showing the date, technician's initials, and any corrective action taken or needed.
- 6. Demonstrate compliance with Part 1, "System Performance."
- 7. Demonstrate compliance with sequences of operation through all modes of operation.
- 8. Demonstrate complete operation of operator interface.
- 9. Additionally, the following items shall be demonstrated:
 - a. DDC loop response. The contractor shall supply trend data output in a graphical form showing the step response of each DDC loop. The test shall show the loop's response to a change in set point, which represents a change of actuator position of at least 25% of its full range. The sampling rate of the trend shall be from 10 seconds to 3 minutes, depending on the speed of the loop. The trend data shall show for each sample the set point, actuator position, and controlled variable values. Any loop that yields unreasonably under-damped or over-damped control shall require further tuning by the Contractor.
 - b. Demand limiting. The contractor shall supply a trend data output showing the action of the demand limiting algorithm. The data shall document the action on a minute-by-minute basis over at least a 30-minute period. Included in the trend shall be building kW, demand limiting set point, and the status of sheddable equipment outputs.
 - optimum start/stop. The contractor shall supply a trend data output showing the capability of the algorithm. The change-of-value or change-of-state trends shall include the output status of all optimally started and stopped equipment, as well as temperature sensor inputs of affected areas.
 - d. Interface to the building fire alarm system.
 - e. Operational logs for each system that indicate all set points, operating points, valve positions, mode, and equipment status shall be submitted to the architect/engineer. These logs shall cover three 48-hour periods and have a sample frequency of not more than 10 minutes. The logs shall be provided in both printed and disk formats.
- 10. Any tests that fail to demonstrate the operation of the system shall be repeated at a later date. The contractor shall be responsible for any necessary repairs or revisions to the hardware or software to successfully complete all tests.

B. Acceptance

1. All tests described in this specification shall have been performed to the satisfaction of both the engineer and owner prior to the acceptance of the control system as meeting the requirements of completion. Any tests that cannot be performed due to circumstances beyond the control of the contractor may be exempt from the completion requirements if stated as such in writing by the engineer. Such tests shall then be performed as part of the warranty.

2. The system shall not be accepted until all forms and checklists completed as part of the demonstration are submitted and approved as required in Part 1, "Submittals."

3.16 CLEANING

- A. The contractor shall clean up all debris resulting from his/her activities daily. The contractor shall remove all cartons, containers, crates, etc., under his/her control as soon as their contents have been removed. Waste shall be collected and placed in a designated location.
- B. At the completion of work in any area, the contractor shall clean all work, equipment, etc., keeping it free from dust, dirt, and debris, etc.
- C. At the completion of work, all equipment furnished under this section shall be checked for paint damage, and any factory-finished paint that has been damaged shall be repaired to match the adjacent areas. Any cabinet or enclosure that has been deformed shall be replaced with new material and repainted to match the adjacent areas.

3.17 TRAINING

- A. Provide a minimum of 2 hours of on-site or classroom training throughout the contract period for personnel designated by the owner.
- B. Provide course outline and materials in accordance with the "Submittals" article in Part 1 of this specification. The instructor(s) shall provide one copy of training material per student.
- C. The instructor(s) shall be factory-trained instructors experienced in presenting this material.
- D. Classroom training shall be done using a network of working controllers representative of the installed hardware.

3.18 ON-SITE ASSISTANCE

A. Occupancy Adjustments: Within one year of date of Substantial Completion, provide up to three Project site visits, when requested by Owner, to adjust and calibrate components and to assist Owner's personnel in making program changes and in adjusting sensors and controls to suit actual conditions.

END OF SECTION 230900

SECTION 230993 - SEQUENCE OF OPERATION FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Section 230900 "HVAC Instrumentation and Controls" for control equipment and devices and for submittal requirements.
- C. Section 230960 "Variable Frequency Drives."

1.2 SUMMARY

- A. This Section includes control sequences for the following HVAC systems, subsystems, and equipment. Sequences of Control indicate basic control function only. Provide all control devices required for controlling air handling units, exhaust fans, physical plant equipment, terminal equipment, and all related items
- B. The Control Contractor shall perform the initial input of all required operational data for each point that is to be used based on information supplied to the Contractor by the Owner. The Contractor shall assist the Owner's staff in developing the schedule and shall demonstrate the operation of the system using the data.
- C. Provide adequate English language notation in the software to assist the operator in understanding the intent of the programmed sequences.
- D. The Control Contractor shall be responsible for the stable operation of all control loops. If the Control Contractor has not provided self-tuning PID control algorithms then the Control Contractor shall manually tune all control loops. Verify all control loops are stable whether or not they are self-tuning.
- E. The Control Contractor shall provide any modifications to the operating sequences as requested by the Owner without additional costs until the final acceptance of the entire control system.

1.3 SEQUENCE OF OPERATIONS

A. See Drawings for sequence of operations, points list, and control diagram.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230993

SECTION 231123 - FUEL GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes fuel gas piping, specialties, and accessories within the building.

1.3 PROJECT CONDITIONS

- A. Gas System Pressures: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2.0 psig, and is reduced to secondary pressure of 0.5 psig or less.
- B. Design values of fuel gas supplied for these systems are; Nominal Heating Value of 1000 Btu/cu. ft. and Nominal Specific Gravity: 0.6.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Specialty valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 2. Pressure regulators. Include pressure rating, capacity, and settings of selected models.
- B. Maintenance Data: For natural gas specialties and accessories to include in maintenance manuals.
- C. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

- A. Electrical Components and Devices: Listed and labeled as defined in NFPA 70, Article 100, by testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ANSI Standard: Comply with ANSI Z223.1, "National Fuel Gas Code."
- C. UL Standard: Provide components listed in UL's "Gas and Oil Equipment Directory" if specified to be UL listed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pressure Regulators:
 - a. Fisher Controls International, Inc.
 - b. Maxitrol Co.

2.2 PIPES, TUBES, FITTINGS, AND JOINING MATERIALS

- A. Steel Pipe: ASTM A 53; Type E or S; Grade B; Schedule 40; black.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern, with threaded ends according to ASME B1.20.1.
 - 2. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends according to ASME B1.20.1.
 - 3. Cast-Iron Flanges and Flanged Fittings: ASME B16.1, Class 125.
 - 4. Steel Welding Fittings: ASME B16.9, wrought steel or ASME B16.11, forged steel.
 - 5. Steel Threaded Fittings: ASME B16.11, forged steel with threaded ends according to ASME B1.20.1.
 - 6. Joint Compound and Tape: Suitable for natural gas.
 - 7. Steel Flanges and Flanged Fittings: ASME B16.5.
 - 8. Gasket Material: Thickness, material, and type suitable for natural gas.
- B. Transition Fittings: Type, material, and end connections to match piping being joined.
- C. Common Joining Materials: Refer to Division 23 Section "Basic Mechanical Materials and Methods" for joining materials not in this Section.

2.3 PIPING SPECIALTIES AND VALVES

- A. Valves, NPS 2 and Smaller: Threaded ends according to ASME B1.20.1 for pipe threads.
- B. Valves, NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
- C. Gas Stops: Bronze body with AGA stamp, plug type with bronze plug and flat or square head, ball type with chrome-plated brass ball and lever handle, or butterfly valve with stainless-steel disc and fluorocarbon elastomer seal and lever handle; 2-psig minimum pressure rating.
- D. Gas Valves, NPS 2 and Smaller: ASME B16.33 and IAS-listed bronze body and 125-psig pressure rating.
- E. General-Duty Valves, NPS 2-1/2 and Larger: ASME B16.38, cast-iron body, suitable for fuel gas service, with "WOG" indicated on valve body, and 125-psig pressure rating.
 - 1. Gate Valves: MSS SP-70, OS&Y type with solid wedge.
 - 2. Butterfly Valves: MSS SP-67, lug type with lever handle.

2.4 PRESSURE REGULATORS

- A. Description: Single stage and suitable for fuel gas service. Include steel jacket and corrosion-resistant components, elevation compensator, and atmospheric vent.
 - 1. NPS 2 and Smaller: Threaded ends according to ASME B1.20.1 for pipe threads.
 - 2. NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 - 3. Appliance Pressure Regulators: ANSI Z21.18. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Flanges, unions, transition, and special fittings with pressure ratings same as or higher than system pressure rating may be used in applications below, unless otherwise indicated.
- B. Fuel Gas Piping, 0.5 psig or Less: Use the following:
 - 1. NPS 1 and Smaller: Steel pipe, malleable-iron threaded fittings, and threaded joints.
 - 2. NPS 1 and Smaller: Hard copper tube, copper fittings, and brazed joints.
 - 3. NPS 1-1/4 to NPS 2: Steel pipe, malleable-iron threaded fittings, and threaded joints.
 - 4. NPS 2-1/2 to and Larger: Steel pipe, steel welding fittings, and welded joints.
- C. Fuel Gas Piping 2 psig: Use the following:
 - 1. NPS 2 and Smaller: Steel pipe, malleable-iron threaded fittings, and threaded joints.
 - 2. NPS 2-1/2 and Larger: Steel pipe, steel welding fittings, and welded joints.
- D. No other pipe, conduit or electrical conductor should be located within 12 inches horizontally of underground natural-gas piping.

3.2 PIPING INSTALLATION

- A. Refer to Division 23 Section "Basic Mechanical Piping Materials and Methods" for basic piping installation requirements.
- B. Install fuel gas piping per NFPA 54 "National Fuel Gas Code".
- C. Drips and Sediment Traps: Install drips at points where condensate may collect. Include outlets of service meters. Locate where readily accessible for cleaning and emptying. Do not install where condensate would be subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use minimum-length nipple of 3 pipe diameters, but not less than 3 inches long, and same size as connected pipe. Install with space between bottom of drip and floor for removal of plug or cap.
- D. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels, unless indicated to be exposed to view.
- E. Install fuel gas piping at uniform grade of 0.1 percent slope upward toward risers.
- F. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

- G. Connect branch piping from top or side of horizontal piping.
- H. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment, and elsewhere as indicated. Unions are not required on flanged devices. Install flanges on valves, specialties, and equipment having NPS 2-1/2 and larger connections.
- I. Install strainer on inlet of each line pressure regulator and automatic and electrically operated valve.
- J. Install vent piping for gas pressure regulators and gas trains, extend outside building, and vent to atmosphere. Terminate vents with turned-down, reducing-elbow fittings with corrosion-resistant insect screens in large end.
- K. Install piping adjacent to appliances to allow service and maintenance.
- L. Connect piping to appliances using gas with shutoff valves and unions. Install valve upstream from and within 72 inches of each appliance. Install union downstream from valve.

3.3 FIELD QUALITY CONTROL

- A. Inspect, test, and purge piping according to ANSI Z223.1, Part 4 "Inspection, Testing, and Purging," and requirements of authorities having jurisdiction.
- B. Repair leaks and defects with new materials and retest system until satisfactory results are obtained.
- C. Adjust controls and safety devices. Replace damaged and malfunctioning controls and safety devices.

END OF SECTION 231123

SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes piping, special-duty valves, and hydronic specialties for hot-water heating, chilled-water cooling, and condensate drain piping.

1.3 SUBMITTALS

- A. Product Data: For each type of special-duty valve indicated. Include flow and pressure drop curves based on manufacturer's testing for diverting fittings, calibrated balancing valves, and automatic flow-control valves.
- B. Maintenance Data: For hydronic specialties and special-duty valves to include in maintenance manuals.
- C. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.4 QUALITY ASSURANCE

- A. Welding: Qualify processes and operators according to the applicable codes.
- B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Chilled Water and Heating Hot Water Systems: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service in accordance with requirements indicated:
 - 1. Notify Construction Manager and Owner no fewer than two weeks in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of hydronic systems without Construction Manager's and Owner's written permission.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Grooved Mechanical-Joint Fittings and Couplings:
 - a. Central Sprinkler Company; Central Grooved Piping Products.
 - b. Grinnell Corporation.
 - c. Victaulic Company of America.
 - d. Star Fittings

2. Calibrated Balancing Valves:

- a. Armstrong Pumps, Inc.
- b. Flow Design, Inc.
- c. Gerand Engineering Company.
- d. Griswold Controls.
- e. ITT Bell & Gossett; ITT Fluid Technology Corp.
- f. Nexus Valve
- g. Taco, Inc.
- h. Pro Hyrdonics Specialties
- i. Oventrop

3. Automatic Flow-Control Valves:

- a. Flow Design, Inc.
- b. Griswold Controls.
- c. Hays Fluid Controls
- d. Nexus
- e. NuTech
- f. Pro Hyrdonics Specialties
- g. Oventrop

2.2 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Solder Filler Metals: ASTM B 32, 95-5 tin antimony.

2.3 STEEL PIPE AND FITTINGS

- A. Steel Pipe, NPS 2 and Smaller: ASTM A 53, Type S (seamless) or Type F (furnace-butt welded), Grade A, Schedule 40, black steel, plain ends.
- B. Steel Pipe, NPS 2-1/2 through NPS 12: ASTM A 53, Type E (electric-resistance welded), Grade A, Schedule 40, black steel, plain ends.
- C. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250.
- D. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300.

- E. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300.
- F. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced.
- G. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- H. Grooved Mechanical-Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47, Grade 32510 malleable iron; ASTM A 53, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders designed to accept grooved end couplings.
- I. Welding Materials: Comply with Section II, Part C, of the ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.
- J. Gasket Material: Thickness, material, and type suitable for fluid to be handled; and design temperatures and pressures.
- K. Outlet Fittings: Sockolet or Threadolet fittings are acceptable for 90-degree branch take-offs. Fittings must comply with ASTM A105, A182, and A403 and be made of same material and wall thickness as pipe in which they are installed.

2.4 VALVES

- A. Ball, and butterfly valves are specified in Division 23 Section "Valves for HVAC."
- B. Refer to Part 3 "Valve Applications" Article for applications of each valve.
- C. Calibrated Balancing Valves, NPS 2 and Smaller: Bronze body, ball type, 125-psig working pressure, 250 deg F maximum operating temperature, and having threaded ends. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.
- D. Calibrated Balancing Valves, NPS 2-1/2 and Larger: Cast-iron or steel body, ball type, 125-psig working pressure, 250 deg F maximum operating temperature, and having flanged or grooved connections. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.
- E. Automatic Flow-Control Valves: Gray-iron body, factory set to maintain constant flow with plus or minus 5 percent over system pressure fluctuations, and equipped with a readout kit including flow meter, probes, hoses, flow charts, and carrying case. Each valve shall have an identification tag attached by chain, and be factory marked with the zone identification, valve number, and flow rate. Valve shall be line size and one of the following designs:
 - 1. Gray-iron or brass body, designed for 175 psig at 200 deg F with stainless-steel piston and spring.
 - 2. Brass or ferrous-metal body, designed for 300 psig at 250 deg F with corrosion-resistant, tamperproof, self-cleaning, piston-spring assembly easily removable for inspection or replacement.
 - 3. Combination assemblies, including bronze ball valve and brass alloy control valve, with stainless-steel piston and spring, fitted with pressure and temperature test valves, and designed for 300 psig at 250 deg F.

2.5 HYDRONIC SPECIALTIES

- A. Manual Air Vent: Bronze body and nonferrous internal parts; 150-psig working pressure; 225 deg F operating temperature; manually operated with screwdriver or thumbscrew; with NPS 1/8 discharge connection and NPS 1/2 inlet connection.
- B. Automatic Air Vent: Designed to vent automatically with float principle; bronze body and nonferrous internal parts; 150-psig working pressure; 240 deg F operating temperature; with NPS 1/4 discharge connection and NPS 1/2 inlet connection.

2.6 CLOSED SYSTEM EQUIPMENT

A. Y-Pattern Strainers: 125-psig working pressure; cast-iron body (ASTM A 126, Class B), flanged ends for NPS 2-1/2 and larger, threaded connections for NPS 2 and smaller, bolted cover, perforated stainless-steel basket, and bottom drain connection.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Heating Hot Water (HWS & HWR)
 - 1. NPS 2 and Smaller:
 - a. Type L drawn-temper copper tubing with soldered joints
 - b. Schedule 40 steel pipe with threaded joints.
 - 2. NPS 2-1/2 and Larger: Schedule 40 steel pipe with welded joints, flanged joints or grooved mechanical-joint couplings.
- B. Chilled Water (CWS & CWR)
 - 1. NPS 2 and Smaller:
 - a. Type L drawn-temper copper tubing with soldered joints
 - b. Schedule 40 steel pipe with threaded joints.
 - 2. NPS 2-1/2 and Larger: Schedule 40 steel pipe with welded joints, flanged joints or grooved mechanical-joint couplings.

3.2 VALVE APPLICATIONS

- A. General-Duty Valve Applications: Unless otherwise indicated, use the following valve types:
 - 1. Shutoff Duty:
 - a. Ball valves.
 - b. Butterfly valves.
- B. Install shutoff duty valves at each branch connection to supply mains, at supply connection to each piece of equipment, unless only one piece of equipment is connected in the branch line. Install throttling duty valves at each branch connection to return mains, at return connections to each piece of equipment, and elsewhere as indicated.

- C. Install calibrated balancing valves in the return water line of each heating or cooling element and elsewhere as required to facilitate system balancing.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves on hot-water generators and elsewhere as required by the ASME Boiler and Pressure Vessel Code. Install safety-valve discharge piping, without valves, to floor. Comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, for installation requirements.
- F. Install pressure-reducing valves on hot-water generators and elsewhere as required to regulate system pressure.

3.3 PIPING INSTALLATIONS

- A. Refer to Division 23 Section "Basic Mechanical Piping Materials and Methods" for basic piping installation requirements.
- B. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- C. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- D. Install drain piping at a uniform grade of 2.0 percent in direction of drain.
- E. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- F. Install strainers on supply side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- G. Anchor piping for proper direction of expansion and contraction.

3.4 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents in mechanical equipment rooms only at high points of system piping, at heat-transfer coils, and elsewhere as required for system air venting.
- C. Install in-line air separators in pump suction lines. Install piping to compression tank with a 2 percent upward slope toward tank. Install drain valve on units NPS 2 and larger.
- D. Install combination air separator and strainer in pump suction lines. Install piping to compression tank with a 2 percent upward slope toward tank. Install blowdown piping with gate valve; extend to nearest drain.

3.5 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.

- 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
- 3. Flush system with clean water. Clean strainers.
- 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
- 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

3.6 START-UP

- A. Perform these adjustments before operating the system:
 - 1. Fill system with water and required chemicals and/or antifreeze solution.
 - 2. Start pump and check pump for proper direction of rotation.
 - 3. Set automatic fill valves for required system pressure.
 - 4. Check air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).

END OF SECTION 232113

SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. The Owner will select and employ the Commissioning Authority (CxA) for this project. All Contractors shall cooperate with the CxA to complete all required commissioning. Specification Section 019113 defines the Contractor's responsibilities with respect to the process. The Contractor shall review this section and shall include in their bids the work associated with the commissioning effort described.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Close-coupled, in-line centrifugal pumps.

1.3 DEFINITIONS

- A. Buna-N: Nitrile rubber.
- B. EPT: Ethylene propylene terpolymer.

1.4 SUBMITTALS

- A. Product Data: Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
- B. Shop Drawings: Show pump layout and connections. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.
- D. See Submittal Schedule located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.

- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of hydronic pumps and are based on the specific system indicated.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. UL Compliance: Comply with UL 778 for motor-operated water pumps.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS

A. Manufacturers:

- 1. Armstrong Pumps Inc.
- 2. Bell & Gossett; Div. of ITT Industries.
- 3. Grundfos Pumps Corporation.
- 4. Taco, Inc.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 14.1-14.2 and HI 14.3; designed for installation with pump and motor shafts mounted horizontally or vertically. Rate pump for 125-psig minimum working pressure and a continuous water temperature of 200 deg F.

C. Pump Construction:

- 1. Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet, and threaded companion-flange or union end connections.
- 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
- 3. Pump Shaft: Steel, with copper-alloy shaft sleeve or stainless steel.
- 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
- 5. Pump Bearings: Lubricated ball bearings.
- D. Motor: Single speed, with lubricated ball bearings, unless otherwise indicated; and rigidly mounted to pump casing. Comply with requirements in Division 23 Section "Basic Mechanical Materials and Methods."

2.3 PUMP SPECIALTY FITTINGS

A. Suction Diffuser: Angle pattern, 175-psig pressure rating, ductile-iron body and end cap, pump-inlet fitting; with bronze startup and bronze or stainless-steel permanent strainers; bronze or stainless-steel straightening vanes; drain plug; and factory-fabricated support.

PART 3 - EXECUTION

3.1 PUMP INSTALLATION

- A. Comply with HI 14.4 as applicable.
- B. Reduction from line size to horizontal pump connection size shall be made with eccentric reducers attached to the pump with tops flat to allow continuity of flow and to avoid air pockets.
- C. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.
- D. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

3.2 ALIGNMENT

- A. Align pump and motor shafts and piping connections after setting on foundation, grout has been set and foundation bolts have been tightened, and piping connections have been made.
- B. Comply with pump and coupling manufacturers' written instructions.
- C. Adjust pump and motor shafts for angular and offset alignment.

3.3 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.
- D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- E. Install shut-off and check valves on discharge side of pumps.
- F. Install Y-type strainer, suction diffuser and shutoff valve on suction side of pumps.
- G. Install pressure gages on pump suction and discharge, at integral pressure-gage tapping, or install single gage with multiple input selector valve.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

- 1. Complete installation and startup checks according to manufacturer's written instructions.
- 2. Check piping connections for tightness.
- 3. Clean strainers on suction piping.
- 4. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
- 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
- 6. Start motor.
- 7. Open discharge valve slowly.

END OF SECTION 232123

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes metal ducts and accessories for heating, ventilating, and air-conditioning systems, diffusers, registers and grilles, and gas vents.

1.3 DEFINITIONS

- A. Pressure Classification for Ductwork: As defined by to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" and applicable codes.
 - 1. Low Pressure: Maximum 2500 fpm velocity; maximum 2.0" WG positive or -2.0" WG negative static pressure class.
 - 2. Medium Pressure: Maximum 4000 fpm velocity; maximum 4.0" WG positive or −3.0" WG negative static pressure class.

1.4 SUBMITTALS

- A. Product data including product construction, installation instructions and performance data for the following:
 - 1. Sealing materials.
- B. No requirement for shop drawings if after examining the contract documents and actual conditions, contractor agrees system can be installed as shown.
- C. Shop Drawings: Show details of the following:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Duct layout indicating pressure classifications and sizes on plans.
 - 3. Fittings.
 - 4. Reinforcement and spacing.
 - 5. Seam and joint construction.
 - 6. Penetrations through fire-rated and other partitions.
 - 7. Terminal unit, coil, and humidifier installations.
 - 8. Hangers and supports, including methods for building attachment, vibration isolation, seismic restraints, and duct attachment.
- D. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

- E. Record Drawings: Indicate actual routing, fitting details, reinforcement, support, and installed accessories and devices.
- F. See "Submittal Schedule" located at the end of Section 230100 "General Requirements for Mechanical Systems."

1.5 QUALITY ASSURANCE

A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," unless otherwise indicated.

PART 2 - PRODUCTS

2.1 SHEET METAL MATERIALS

- A. Galvanized, Sheet Steel: Lock-forming quality; ASTM A 653/A 653M, G90 coating designation; mill-phosphatized finish for surfaces of ducts exposed to view.
- B. Reinforcement Shapes and Plates: Galvanized steel reinforcement where installed on galvanized, sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for 36-inch length or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 SEALANT MATERIALS

A. Duct Sealant: UL classified, non-combustible, flame spread 25 or less, smoke developed rating of 540 or less, resistant to water, pressure rupture rating of 16" WG minimum, suitable for use alone or with tape, application an operational temperature ranges appropriate for usage.

2.3 MANUFACTURED DUCT JOINTS

A. Manufactured duct joining system to consistent of roll formed angles, corner pieces, metal cleats and gasket material. Construct and join ductwork in accordance with the latest SMACNA test data and joint reinforcement schedule corresponding to duct gauge used. Corners to be down set design, no bolt design except bolting is required for medium pressure applications. Reinforcements requirement for sheet metal to comply with latest SMACNA for manufactured duct Joining technique appropriate to get to pressure class.

2.4 TURNING VANES

- A. Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
- B. Manufactured Turning Vanes: Fabricate of 1-1/2-inch- wide, curved blades set 3/4 inch o.c.; support with bars perpendicular to blades set 2 inches on center; and set into side strips suitable for mounting in ducts.

2.5 FLEXIBLE CONNECTORS

- A. General: Flame-retarded or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.
- B. Neoprene double-coated woven glass fibber fabric in accordance with NFPA 90A, suitable for temperatures and pressures of application, approximately 6" wide, crimped into metal edge strip.

2.6 ACCESSORY HARDWARE

- A. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 to 18 inches to suit duct size.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.7 HANGERS AND SUPPORTS

- A. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for building materials.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- D. Rooftop Duct Supports: Extruded-aluminum, urethane-insulated supports, 2 inches in diameter; with manufacturer's recommended hardware for mounting to structure or structural roof deck.

PART 3 - EXECUTION

3.1 DUCT FABRICATION

A. General: Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction with galvanized, sheet steel, according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible." Comply with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, and joint types and intervals.

B. Low Pressure duct

- 1. Seams and Joints (Rectangular Ducts): Longitudinal seams shall be Pittsburg lock, grooved seams or button punch snap lock. Transverse joints shall be drive slip. Joints 36" and larger shall be manufactured duct joining system with downset corners, or SMACNA T-25 formed on flanges with corner and cleat. Contractor option on smaller sizes
- 2. Seams and Joints (Concealed Round Duct): Transverse joints in low velocity concealed round ducts shall be slip type secured with sheet metal screws equally spaced on 6" centers maximum with a minimum of three screws per joint. Joints shall be sealed with mastic during joining. Exposed inside edge of duct at joint shall point in direction of airflow. All duct joints exposed to weather shall be caulked weathertight.
- 3. Seams and joints (Exposed Round Duct): Longitudinal seams shall be lock type spiral or grooved seams rolled spirally. Transverse joints shall be slip type up to 36" in diameter and shall be sealed

with mastic during joining. Flanged and gasketed joints shall be used on size larger than 36" diameter.

C. Medium Pressure duct

- 1. Seams and Joints (Rectangular Ducts): Longitudinal seams shall be grooved seams with sealant and center punched at 12" maximum intervals or Pittsburg lock type with sealant. Transverse joints shall be flanged and gasketed manufactured duct joining system with downset corners bolted corners.
- 2. Seams and joints (Oval or Round Duct): Longitudinal seams shall be lock type spiral or grooved seams rolled spirally. Transverse joints shall be slip type up to 36" in diameter and shall be sealed with mastic during joining. Flanged and gasketed joints shall be used on size larger than 36" diameter.
- **3.** Duct Seal Requirements: Ductwork shall be sealed per SMACNA Seal Class "B". Sealant material shall be installed per manufacturer's recommendations.

D. Elbows:

- 1. Use long-radius elbows wherever they fit (radius equals 1.5 x duct width).
- 2. Where indicated on plan or where long radius elbows do not fit (and approved by engineer):
 - a. Utilize 90-degree rectangular mitered elbows with turning vanes.
 - b. Utilize short radius elbows (radius equals 1 x duct width)
- 3. Fabricate 90-degree round duct elbows with a minimum of three segments for 12 inches and smaller and a minimum of five segments for 14 inches and larger.
- E. Round Branch Connections: Use lateral or conical branch connections.
- F. Static-Pressure Classifications: Unless otherwise indicated, construct ducts to the following:
 - 1. Supply air duct from air handling unit or rooftop unit outlet to terminal units: Medium Pressure.
 - 2. Supply air duct from terminal unit outlet to air outlets: Low Pressure
 - 3. Supply air duct from rooftop unit to air outlets: Low Pressure
- G. Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches and larger and 0.0359 inch thick or less, with more than 10 sq. ft. of unbraced panel area, unless ducts are lined.
- H. Sizes shown on plans are inside clear dimensions. Ductwork utilizing duct liner shall be increased in size to accommodate the duct liner thickness.

3.2 DUCT INSTALLATION

- A. Drawings indicate general arrangement of ducts, fittings, and accessories. Minor modifications to route, size and shape of duct may be required to meet structural and other interference. Changes which could affect system performance shall be reviewed by Architect/Engineer prior to fabrication or installation of duct.
- B. Construct and install each duct system for the specific duct pressure classification indicated.
- C. Install ducts with fewest possible joints.
- D. Install fabricated fittings for changes in directions, changes in size and shape, and connections.

- E. Install couplings tight to duct wall surface with a minimum of projections into duct.
- F. Install ducts, unless otherwise indicated, vertically and horizontally, parallel and perpendicular to building lines; avoid diagonal runs.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions, unless specifically indicated.
- J. Coordinate layout with suspended ceiling, fire- and smoke-control dampers, lighting layouts, and similar finished work.
- K. Electrical Equipment Spaces: Route ductwork to avoid passing through transformer vaults and electrical equipment spaces and enclosures.
- L. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, and are exposed to view, conceal space between construction opening and duct or duct insulation with sheet metal flanges of same metal thickness as duct. Overlap opening on four sides by at least 1-1/2 inches.
- M. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire damper, sleeve, and fire-stopping sealant. Contractor shall be responsible to coordinate appropriately rated fire damper with supplier and engineer. All fire dampers shall be dynamically rated unless otherwise approved by Engineer and Authority Having Jurisdiction.
- N. Roof penetrations by ducts should have curbs. Ducts that are interrupted at the curb should overhang the top of the curb or be flashed to divert water over the curb. Ducts that are continuous through the curb should have flashing that slopes over the curb ad is sealed to the duct with caulking or suitable tape.

3.3 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

Project No: 25336

Morrissey Engineering Inc.

- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- G. Ductwork mounted on roof or otherwise exposed to elements shall be supported with frames constructed of galvanized steel angles and channels, regardless of duct size. Supports shall not rest on top of roof, but shall be firmly attached to roof structure and properly flashed. All fasteners should be galvanized. Supports should elevate ductwork above finished roof level by a minimum of 18 inches.

3.4 PROTECTION OF DUCTWORK ON SITE

A. Ductwork stored on site as well as installed ductwork that is left open to construction activities shall be covered. Provide protective coverings on open ends of ductwork to prevent excessive accumulation of dust and debris on interior surfaces. Protection and storage of ductwork shall be in accordance to SMACNA's 'Duct Cleanliness for New Construction'.

3.5 SEAM AND JOINT SEALING

- A. Low Pressure Ductwork: Seal per SMACNA Seal Class "C". Sealant material shall be installed per manufacturer's recommendations.
- B. Medium Pressure Ductwork: Seal per SMACNA Seal Class "B". Sealant material shall be installed per manufacturer's recommendations.
- C. Seal externally insulated ducts before insulation installation.

3.6 HANGING AND SUPPORTING

- A. Install rigid round, rectangular, and flat-oval metal duct with support systems indicated in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
- B. Support horizontal ducts within 24 inches of each elbow and within 48 inches of each branch intersection.
- C. Support vertical ducts at a maximum interval of 16 feet and at each floor.

3.7 DUCT ACCESSORY INSTALLATION

- A. Install duct accessories according to applicable details shown in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts.
- B. Install volume dampers at locations indicated and at all branch take-offs to air outlets and inlets.
- C. Provide turning vanes in all mitered elbows and duct turns.
- D. Install duct access panels for access to inlet side of coils, equipment, control dampers, fire dampers, and smoke dampers.

- E. Final connections to air outlets and terminal units may be made with flexible duct. Install flexible ducts with metal collars or sleeves with draw bands. Length of flexible duct shall not exceed 36", path shall not exceed 0°.
- F. Provide flexible connections to motor-driven equipment. Secure fabric to duct or fan collar with 3/16" rivets space not more than 5" on center. Provide thrust restraints so that connections are not in tension with equipment in operation.

3.8 ADJUSTING

- A. Adjust volume-control dampers in ducts, outlets, and inlets to achieve design airflow. Refer to Division 23 Section "Testing, Adjusting, and Balancing" for detailed procedures.
- B. Adjust duct accessories for proper settings and actions.

3.9 CLEANING

- A. After completing system installation, inspect the system. Vacuum ducts before final acceptance to remove dust and debris.
- B. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

END OF SECTION 233113

SECTION 237313 - ROOFTOP AIR HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. The Owner will select and employ the Commissioning Authority (CxA) for this project. All Contractors shall cooperate with the CxA to complete all required commissioning. Specification Section 019113 defines the Contractor's responsibilities with respect to the process. The Contractor shall review this section and shall include in their bids the work associated with the commissioning effort described.

1.2 SUMMARY

A. This Section includes packaged heating and cooling rooftop air handling units (RTU's).

1.3 SUBMITTALS

- A. Product Data: Include manufacturer's technical data for each model indicated, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For rooftop air conditioners to include in emergency, operation, and maintenance manuals.
- E. Warranties: Special warranties specified in this Section.

1.4 OUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of rooftop air conditioners and are based on the specific system indicated. Refer to Division 1 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Code for Mechanical Refrigeration."
- D. Energy-Efficiency Ratio: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."

- E. Comply with NFPA 54 for gas-fired furnace section.
- F. ARI Certification: Units shall be ARI certified and listed.
- G. ARI Compliance for Units with Capacities 135,000 Btuh and More: Rate rooftop air-conditioner capacity according to ARI 340/360, "Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment."
 - 1. Sound Power Level Ratings: Comply with ARI 270, "Sound Rating of Outdoor Unitary Equipment."

1.5 COORDINATION

A. Coordinate size, location, and installation of rooftop air-conditioner manufacturer's roof curbs and equipment supports with roof installer.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of rooftop air conditioners that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
 - 2. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Wheel Belts: One set.
 - 2. Filters: two sets of filters for each unit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Products shall be provided by the following manufacturers:
 - 1. AAON (Basis of Design)
 - 2. Substitute equipment may be considered for prior approval that includes at a minimum:
 - a. R-454B refrigerant
 - b. Direct drive supply fans
 - c. Double wall cabinet construction
 - d. Insulation with a minimum R-value of 13
 - e. Stainless steel drain pans
 - f. Hinged access doors with lockable handles
 - g. Variable capacity compressor with 10-100% capacity

- h. Energy recovery wheel.
- i. Modulating gas valves
- j. Modulating hot gas reheat

2.2 ROOFTOP AIR CONDITIONERS

A. General Description

- 1. Packaged rooftop unit shall include compressors, evaporator coils, filters, supply fans, dampers, air-cooled condenser coils, condenser fans, reheat coil, gas heaters, exhaust fans, energy recovery wheels with bypass damper, and unit controls.
- 2. Unit shall be factory assembled and tested including leak testing of the coils, pressure testing of the refrigeration circuit, and run testing of the completed unit. Run test report shall be supplied with the unit in the controls compartment's literature pocket.
- 3. Unit components shall be labeled, including pipe stub outs, refrigeration system components and electrical and controls components.
- 4. Estimated sound power levels (dB) shall be shown on the unit ratings sheet.
- 5. Installation, Operation and Maintenance manual shall be supplied within the unit.
- 6. Laminated color-coded wiring diagram shall match factory installed wiring and shall be affixed to the interior of the control compartment's access door.
- 7. Unit nameplate shall be provided in two locations on the unit, affixed to the exterior of the unit and affixed to the interior of the control compartment's access door.

B. Construction

- 1. All cabinet walls, access doors, and roof shall be fabricated of double wall, impact resistant, rigid polyurethane foam panels.
- 2. Unit insulation shall have a minimum thermal resistance R-value of 13. Foam insulation shall have a minimum density of 2 pounds/cubic.
- 3. Unit construction shall be double wall with G90 galvanized steel on both sides and a thermal break. Double wall construction with a thermal break.
- 4. Roof of the air tunnel shall be sloped to provide complete drainage. Cabinet shall have rain break overhangs above access doors.
- 5. Access to filters, dampers, cooling coils, reheat coil, heaters, energy recovery wheels, compressors, and electrical and controls components shall be through hinged access doors with quarter turn, lockable handles.
- 6. Exterior paint finish shall be capable of withstanding at least 2,500 hours, with no visible corrosive effects, when tested in a salt spray and fog atmosphere in accordance with ASTM B 117-95 test procedure.
- 7. Units with cooling coils shall include double sloped 304 stainless steel drain pans.
- 8. Unit shall be provided with base discharge and return air openings, as indicated on plans. Openings shall have upturned flanges of at least 1/2 inch in height around the opening.
- 9. Unit shall include lifting lugs on the top of the unit.

C. Electrical

- 1. Unit shall be provided with standard power block for connecting power to the unit.
- 2. Unit shall have single point power connection and factory disconnect.

D. Supply Fans

- 1. Units shall include direct drive, unhoused, backward curved, plenum supply fans.
- 2. Blowers and motors shall be dynamically balanced and mounted on rubber isolators.

3. Motors shall be standard (premium) efficiency ODP with ball bearings rated for 200,000 hours service with external lubrication points.

E. Exhaust Fans

- 1. Exhaust dampers shall be sized for 100% relief.
- 2. Fans and motors shall be dynamically balanced.
- 3. Motors shall be premium efficiency ODP with ball bearings rated for 200,000 hours service with external lubrication points.
- 4. Access to exhaust fans shall be through double wall, hinged access doors with quarter turn handles.

F. Cooling Coils

1. Evaporator Coils

- a. Coils shall be designed for use with R-454B refrigerant and constructed of copper tubes with aluminum fins mechanically bonded to the tubes and galvanized steel end casings. Fin design shall be sine wave rippled.
- b. Coils shall be standard 6 row high capacity.
- c. Coils shall be helium or hydrogen leak tested.
- d. Coils shall be furnished with a factory installed expansion valves.

G. Refrigeration System

- 1. Unit shall be factory charged with R-454B refrigerant.
- 2. Compressors shall be scroll type with thermal overload protection and carry a 5 year non-prorated warranty, from the date of original equipment shipment from the factory.
- 3. Compressors shall be mounted in an isolated service compartment which can be accessed without affecting unit operation. Lockable hinged compressor access doors shall be fabricated of double wall, rigid polyurethane foam insulated panels to prevent the transmission of noise outside the cabinet.
- 4. Compressors shall be isolated from the base pan with the compressor manufacturer's recommended rubber vibration isolators, to reduce any transmission of noise from the compressors into the building area.
- 5. Each refrigeration circuit shall be equipped with expansion valve type refrigerant flow control.
- 6. Each refrigeration circuit shall be equipped with automatic reset low pressure and manual reset high pressure refrigerant safety controls, Schrader type service fittings on both the high pressure and low pressure sides, and factory installed liquid line filter driers.
 - a. Unit shall include a variable capacity scroll compressor on the refrigeration circuit which shall be capable of modulation from 10-100% of its capacity.
 - b. Each refrigeration circuit shall be equipped with a liquid line sight glass.
 - Each refrigeration circuit shall be equipped with suction and discharge compressor isolation valves.
 - d. Each capacity stage shall be equipped with a 5 minute off, delay timer to prevent compressor short cycling.
 - e. Each capacity stage shall be equipped with an adjustable, 20 second delay timer to prevent multiple capacity stages from starting all at once.
 - f. Refrigeration circuit(s) shall be provided with aluminum microchannel hot gas reheat coil, modulating valves, electronic controller, supply air temperature sensor and a dehumidification control signal terminal which allow the unit to have a dehumidification mode of operation, which includes supply air temperature control to prevent supply air temperature swings and overcooling of the space.

H. Condensers

1. Air-Cooled Condenser

- a. Condenser fans shall be vertical discharge, axial flow, direct drive fans.
- b. Coils shall be designed for use with R-454B refrigerant. Coils shall be multi-pass and fabricated from aluminum microchannel tubes.

I. Gas Heating

- 1. Stainless steel heat exchanger furnace shall carry a 25-year non-prorated warranty, from the date of original equipment shipment from the factory.
- 2. Furnace shall include a gas ignition system consisting of an electronic igniter to a pilot system, which will be continuous when the heater is operating, but will shut off the pilot when heating is not required.
- 3. Modulating Natural Gas Furnace shall be equipped with modulating gas valves, adjustable speed combustion blowers, stainless steel tubular heat exchangers, and electronic controller. Combustion blowers and gas valves shall be capable of modulation. Electronic controller includes a factory wired, field installed supply air temperature sensor. Sensor shall be field installed in the supply air ductwork. Supply air temperature setpoint shall be adjustable on the electronic controller within the controls compartment. Gas heater shall be capable of capacity turndown ratio as shown on the unit rating sheet.

J. Filters

- 1. Unit shall include 2 inch thick, pleated panel filters with an ASHRAE MERV rating of 8, upstream of the cooling coil.
- 2. Unit shall include a clogged filter switch.

K. Outside Air/Economizer

1. Unit shall include 0-100% economizer consisting of a motor operated outside air damper and return air damper assembly constructed of extruded aluminum, hollow core, airfoil blades with rubber edge and end seals. Damper blades shall be gear driven and designed to have no more than 20 cfm of leakage per sq ft. at 4 in. w.g. air pressure differential across the damper. Low leakage dampers shall be Class 2 AMCA certified, in accordance with AMCA Standard 511. Damper assembly shall be controlled by spring return actuator. Unit shall include outside air opening bird screen, outside air hood and relief dampers.

L. Energy Recovery

- 1. Unit shall contain a factory mounted and tested energy recovery wheel(s). The energy recovery wheel(s) shall be mounted in a rigid frame containing the wheel drive motor, drive belt, wheel seals and bearings.
- 2. Wheel frame shall slide out for service and removal from the cabinet.
- 3. The energy recovery cassette shall be an Underwriters Laboratories Recognized Component for electrical and fire safety. The wheel drive motor shall be an Underwriters Laboratory Recognized Component and shall be mounted in the cassette frame and supplied with a service connector or junction box. Thermal performance shall be certified by the manufacturer in accordance with ASHRAE Standard 84, Method of Testing Air-to-Air Heat Exchangers and AHRI Standard 1060, Rating Air-to-Air Energy Recovery Ventilation Equipment. Cassettes shall be listed in the AHRI Certified Products.
- 4. Unit shall include 2 inch thick, pleated panel outside air and exhaust air filters with an ASHRAE MERV rating of 8, upstream of the wheels.
- 5. Hinged service access door shall allow access to the wheel(s).

6. Polymer Energy Recovery Wheels

a. Total energy recovery wheels shall be coated with silica gel desiccant permanently bonded by a process without the use of binders or adhesives, which may degrade desiccant performance. The substrate shall be lightweight polymer and shall not degrade nor require additional coatings for application in marine or coastal environments. Coated segments shall be washable with detergent or alkaline coil cleaner and water. Desiccant shall not dissolve nor deliquesce in the presence of water or high humidity.

M. Factory Controls

- 1. Factory Installed and Factory Provided Controller
- 2. Unit controller shall be capable of controlling all features and options of the unit. Controller shall be factory installed in the unit controls compartment and factory tested.
- 3. Controller shall be capable of standalone operation with unit configuration, set point adjustment, sensor status viewing, unit alarm viewing, and occupancy scheduling available without dependence on a building management system.
- 4. Controller shall have an onboard clock and calendar functions that allow for occupancy scheduling.
- 5. Controller shall include non-volatile memory to retain all programmed values, without the use of an external battery, in the event of a power failure.
- 6. Unit configuration, setpoint adjustment, sensor status viewing, unit alarm viewing, and occupancy scheduling shall be accomplished with connection to interface module with LCD screen and input keypad, interface module with touch screen, or with connection to PC with free configuration software. Controller shall be capable of connection with other factory installed and factory provided unit controllers with individual unit configuration, setpoint adjustment, sensor status viewing, and occupancy scheduling available from a single unit. Connection between unit controllers shall be with a modular cable. Controller shall be capable of communicating and integrating with a LonWorks or BACnet network.

N. Single Zone VAV

- 1. Unit shall utilize a variable capacity compressor system, variable speed compressor system, or two-step compressor system and a variable speed fan system to modulate cooling and airflow as required in meeting the space temperature needs and to save unit operating energy. Unit fan speed shall modulate based on space temperature, not supply air pressure.
- 2. Units with modulating heat (modulating gas) shall be capable of modulating fan speed in both the heating and cooling mode.
- 3. With modulating hot gas reheat, unit shall modulate cooling and hot gas reheat as efficiently as possible, to meet space humidity loads and prevent supply air temperature swings and overcooling of the space.
- 4. Unit shall be provided with supply air temperature control. Mixing boxes and bypass ducts shall not be required for operation as a single zone VAV system.

O. Accessories

- 1. Unit shall be provided with a smoke detector(s) sensing the return air (supply air) (return and supply air) of the unit, wired to shut off the unit's control circuit.
- 2. PVC condensate drain trap.
- 3. Hail guards of steel, painted to match casing.
- 4. Space CO2 sensor for demand control ventilation operation (see plans for applicable units).

2.3 CURBS AND CURB ADAPTORS

- A. Curbs shall to be fully gasketed between the curb top and unit bottom with the curb providing full perimeter support, cross structure support and air seal for the unit. Curb gasket shall be furnished within the control compartment of the rooftop unit to be mounted on the curb immediately before mounting of the rooftop unit. Provide curb with vibration isolation curb rail.
- B. Curb adaptor shall be matched existing curb currently in place. Supplier to field verify existing curb assembly.

2.4 MAINTENANCE PLATFORM

- A. Provide galvanized maintenance platform with anti-slip grating around rooftop equipment. Platform height shall match existing rooftop equipment structural steel height.
- B. Provide platform with rubber base pads, anti-slip grating for support up to 550 lbs., side rails (removable) and stair rails.
- C. Manufacturer: Rooftop Support Systems "RTS" www.rooftopsupportsystems.com or equal
- D. Installation: The installation contractor should become familiar with the manufacturer's rigging and installation instructions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb, maintaining manufacturer's recommended clearances.
- B. Curb Support: Install roof curb on roof structure, level and secure, according to ARI Guideline B. Install and secure rooftop air conditioners on curbs and coordinate roof penetrations and flashing with roof construction. Secure units to curb support with anchor bolts.
- C. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with roof construction.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
 - 1. Gas Piping: Comply with applicable requirements in Division 22 Section "Fuel Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
- C. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 - 1. Install ducts to termination in roof curb.
 - 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.

- 3. Connect supply ducts to rooftop unit with flexible duct connectors.
- 4. Terminate return-air duct through roof structure and insulate space between roof and bottom of unit with 1-1/2-inch- thick, acoustic duct liner.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field quality-control tests and inspections and prepare test reports:
 - 1. After installing rooftop air conditioners and after electrical circuitry has been energized, test units for compliance with requirements.
 - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove malfunctioning units, replace with new units, and retest as specified above.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Complete installation and startup checks according to manufacturer's written instructions and do the following:
 - 1. Inspect for visible damage.
 - 2. Verify that clearances have been provided for servicing.
 - 3. Verify that controls are connected and operable.
 - 4. Verify that filters are installed.
 - 5. Clean outside coil and inspect for construction debris.
 - 6. Clean furnace flue and inspect for construction debris.
 - 7. Connect and purge gas line.
 - 8. Adjust vibration isolators.
 - 9. Inspect operation of barometric dampers.
 - 10. Lubricate bearings on fan.
 - 11. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 - 12. Adjust fan belts to proper alignment and tension.
 - 13. Start unit according to manufacturer's written instructions.
 - a. Start refrigeration system in summer only.
 - b. Complete startup sheets and attach copy with Contractor's startup report.
 - 14. Calibrate thermostats.
 - 15. Adjust and inspect high-temperature limits.
 - 16. Inspect outside-air dampers for proper stroke and interlock with return-air dampers.
 - 17. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.

3.5 ADJUSTING

- A. Adjust initial temperature and humidity set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site outside normal occupancy hours for this purpose, without additional cost.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain rooftop air conditioners.

END OF SECTION 237313

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. The Owner will select and employ the Commissioning Authority (CxA) for this project. All Contractors shall cooperate with the CxA to complete all required commissioning. Specification Section 019113 defines the Contractor's responsibilities with respect to the process. The Contractor shall review this section and shall include in their bids the work associated with the commissioning effort described.

1.2 SUMMARY

A. Section Includes:

1. Outdoor Air variable-air-volume air handling units.

1.3 SUBMITTALS

A. Shop Drawings: Indicate assembly, unit dimensions, weight loading, required clearances, construction details, field connection details, and electrical characteristics and connection requirements. Computer generated fan curves for each air handling unit shall be submitted with specific design operating point noted. A computer generated psychometric chart shall be submitted for each cooling coil with design points and final operating point clearly noted. Sound data for discharge, radiated and return positions shall be submitted by octave band for each unit. Calculations for required baserail heights to satisfy condensate trapping requirements of cooling coil shall be included.

B. Product Data:

- 1. Provide literature that indicates dimensions, weights, capacities, ratings, fan performance, and electrical characteristics and connection requirements.
- 2. Provide data of filter media, filter performance data, filter assembly, and filter frames.
- 3. Provide manufacturer's Installation Instructions.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.
- C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.

- D. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. Comply with NFPA 70.

1.5 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, protect and handle products to site.
- B. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids. Inspect for damage.
- C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Daikin Applied "Skyline" as (BASIS OF DESIGN)
 - 2. Alternate manufacturers
 - a. Temtrol
 - b. York
 - c. Carrier

2.2 GENERAL DESCRIPTION

- A. Configuration: Fabricate as detailed on drawings.
- B. Performance: Conform to AHRI 430. See schedules on prints.

2.3 UNIT CONSTRUCTION

- A. Fabricate unit with heavy gauge channel posts and panels secured with mechanical fasteners. All panels, access doors, and ship sections shall be sealed with permanently applied bulb-type gasket. Shipped loose gasketing is not allowed.
- B. Panels and access doors shall be constructed as a 2-inch nominal thick; thermal broke double wall assembly, injected with foam insulation with an R-value of not less than R-13.

- 1. Exterior surfaces shall be constructed of painted galvanized steel, for aesthetics and long-term durability. Paint finish will include a base primer with a high-quality polyester resin topcoat. Finished, unabraded panel surfaces shall be exposed to an ASTM B117 salt spray environment and exhibit no visible red rust at a minimum of 3,000 hours exposure. Finished, abraded surfaces shall be tested per ASTM D1654, having a mean scribe creepage not exceeding 1/16" at 1,000 hours minimum exposure to an ASTM B117 salt spray environment. Measurements of results shall be quantified using ASTM D1654 in conjunction with ASTM D610 and ASTM D714 to evaluate blister and rust ratings.
- 2. The inner liner shall be constructed of G90 galvanized steel.
- 3. The floor plate shall be constructed as specified for the inner liner.
- 4. Unit will be furnished with solid inner liners.
- 5. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, maximum 5 inches of positive or 6 inches of negative static pressure. Deflection shall be measured at the panel midpoint.
- 6. The casing leakage rate shall not exceed 0.50 cfm per square foot of casing surface area at design static pressure up to a maximum of +5" w.c. in positive pressure sections and -6" w.c. in negative pressure sections
- 7. Module to module field assembly shall be accomplished with an overlapping, full perimeter internal splice joint that is sealed with bulb type gasketing on both mating modules to minimize on-site labor and meet indoor air quality standards.
- 8. Access doors shall be flush mounted to cabinetry, with minimum of two six inch long stainless steel piano-type hinges, latch and full size handle assembly. Access doors shall swing outward for unit sections under negative pressure. Access doors on positive pressure sections, shall have a secondary latch to relieve pressure and prevent injury upon access.
- 9. Provide cross broke roof cap system to divert water from the top surface of the air handler. The rain shed roof cap shall have 2"standing seams covered with splice cap channels to seal top seam. Splice cap shall break down over sides of standing seam to protect the ends of the seam.
 - a. Cooling coil piping vestibule 18" deep shall be factory installed of standard cabinet construction on the coil connection side of the unit. Roof cap over vestibule shall be a continuous single piece covering both the coil section and the vestibule. Roof cap seams between coil section and vestibule are not allowed.
 - b. Heating coil piping vestibule 18" deep shall be factory installed of standard cabinet construction on the coil connection side of the unit. Roof cap over vestibule shall be a continuous single piece covering both the coil section and the vestibule. Roof cap seams between coil section and vestibule are not allowed.
- C. The unit shall have a 6-inch curb ready base for structural rigidity and condensate trapping. The curbready base shall be designed with sloped drip pans located under all unit sections except duct openings and shall be supported by frame member.
- D. Roof curb kit of 16-inch height shall provide support for the air handler on the building roof and provide a weather protected area for terminating and securing the roof membrane. The roof curb kit shall be manufactured by the air handler unit manufacturer.
 - 1. Provide curb adaptor to match existing roof curb assembly
- E. An insulated, double-walled piping vestibule, 18" deep, shall be factory installed of standard cabinet construction on the coil connection side of the unit. Roof cap over vestibule shall be a continuous single piece covering both the coil section and the vestibule. Roof cap seams between coil section and vestibule are not allowed.
- F. Construct drain pans from stainless steel with cross break and double sloping pitch to drain connection. Provide drain pans under cooling coil section. Drain connection centerline shall be a minimum of 3" above the base rail to aid in proper condensate trapping. Drain connections that protrude from the base rail are not acceptable. There must be a full 2" thickness of insulation under drain pan.

Project No: 25336

Morrissev Engineering Inc.

2.4 FAN ASSEMBLIES

- A. Provide ECM, motorized impeller fan(s). Fan assembly shall include fan, fan base, and a motor and shall be dynamically balanced by the fan manufacturer.
 - 1. Fan array's shall be equipped with a piezometer point to measure airflow. One piezometer point shall be supplied on one fan in the fan array.
 - 2. Motor control panel shall come equipped with a fused disconnect.
 - 3. Motor control panel shall come with a low voltage terminal strip and shall include terminals for Fan ON/OFF, 0-10V signal, and fan fault.
 - 4. Motor shall be brushless DC type with a permanent magnet rotor.
 - 5. Fan section shall come equipped with a motor control panel mounted on the fan section. Both line voltage and low voltage wiring shall be done by the factory. Each fan shall have an isolation switch.
 - 6. Inverter shall be integral to the motor and come as an assembly from the fan manufacturer
 - 7. Fan and motor shall be mounted internally on a steel base. Factory mount motor on slide base that can be slid out the side of the unit if removal is required. Provide access to motor, drive, and bearings through hinged access door. Fan and motor assembly shall be mounted on 2" deflection spring vibration type isolators inside cabinetry.

2.5 BEARINGS, SHAFTS, AND DRIVES

- A. Bearings: Basic load rating computed in accordance with AFBMA ANSI Standards. The bearings shall be provided on the motor with the fan wheel mounted directly on the motor shaft, AMCA arrangement 4.
- B. Shafts shall be solid, hot rolled steel, ground and polished, keyed to shaft, and protectively coated with lubricating oil. Hollow shafts are not acceptable.
- C. The fan wheel shall be direct coupled to the motor shaft. The wheel width shall be determined by motor speed and fan performance characteristics.

2.6 ELECTRICAL

- A. The air handler(s) shall be ETL and ETL-Canada listed by Intertek Testing Services, Inc. Units shall conform to bi-national standard ANSI/UL Standard 1995/CSA Standard C22.2 No. 236.
- B. Fan motors shall be manufacturer provided and installed, Open Drip Proof, premium efficiency (meets or exceeds EPAct requirements), 1750 RPM, single speed, 460V / 60HZ / 3P. Complete electrical characteristics for each fan motor shall be as shown in schedule.
- C. Wiring Termination: Provide terminal lugs to match branch circuit conductor quantities, sizes, and materials indicated. Enclosed terminal lugs in terminal box sized to NFPA 70.
- D. Manufacturer shall provide ASHRAE 90.1 Energy Efficiency equation details for individual equipment to assist Building Engineer for calculating system compliance.
- E. Installing contractor shall provide GFI receptacle within 25 feet of unit to satisfy National Electrical Code requirements.
- F. Air handler manufacturer shall provide, mount and wire variable speed drive with electrical characteristics such as indicated on project schedule and shown on manufacturer's data sheets.

2.7 COOLING AND HEATING COIL SECTIONS

- A. Certification: Acceptable water cooling, water heating, steam, and refrigerant coils shall be certified in accordance with AHRI Standard 410 and bear the AHRI label. Coils exceeding the scope of the manufacturer's certification and/or the range of AHRI's standard rating conditions will be considered provided the manufacturer is a current member of the AHRI Forced Circulation Air-Cooling and Air-Heating Coils certification programs and that the coils have been rated in accordance with AHRI Standard 410. Manufacturer must be ISO 9002 certified.
- B. Water cooling coil shall be provided. Provide access to coil(s) for service and cleaning. Enclose coil headers and return bends fully within unit casing. Unit shall be provided with coil connections that extend a minimum of 5" beyond unit casing for ease of installation. Drain and vent connections shall be provided exterior to unit casing. Coil connections must be factory sealed with grommets on interior and exterior panel liners to minimize air leakage and condensation inside panel assembly. If not factory packaged, Contractor must supply all coil connection grommets and sleeves. Coils shall be removable through side and/or top panels of unit without the need to remove and disassemble the entire section from the unit.
 - 1. Headers shall consist of seamless copper tubing to assure compatibility with primary surface. Headers to have intruded tube holes to provide maximum brazing surface for tube to header joint, strength, and inherent flexibility. Header diameter should vary with fluid flow requirements.
 - 2. Fins shall have a minimum thickness of 0.0075 inch aluminum plate construction. Fins shall have full drawn collars to provide a continuous surface cover over the entire tube for maximum heat transfer. Tubes shall be mechanically expanded into the fins to provide a continuous primary to secondary compression bond over the entire finned length for maximum heat transfer rates. Bare copper tubes shall not be visible between fins.
 - 3. Coil tubes shall be OD seamless copper, 0.020 inch nominal tube wall thickness, expanded into fins, brazed at joints.
 - 4. Coil connections shall be carbon steel, NPT threaded connection. Connection size to be determined by manufacturer based upon the most efficient coil circuiting. Vent and drain fittings shall be furnished on the connections, exterior to the air handler. Vent connections provided at the highest point to assure proper venting. Drain connections shall be provided at the lowest point to insure complete drainage and prevent freeze-up.
 - 5. Coil casing shall be a formed channel frame of galvanized steel.
- C. Water heating coil shall be provided. Provide access to coil(s) for service and cleaning. Enclose coil headers and return bends fully within unit casing. Unit shall be provided with coil connections that extend a minimum of 5" beyond unit casing for ease of installation. Drain and vent connections shall be provided exterior to unit casing. Coil connections must be factory sealed with grommets on interior and exterior panel liners to minimize air leakage and condensation inside panel assembly. If not factory packaged, Contractor must supply all coil connection grommets and sleeves. Coils shall be removable through side and/or top panels of unit without the need to remove and disassemble the entire section from the unit.
 - 1. Headers shall consist of seamless copper tubing to assure compatibility with primary surface. Headers to have intruded tube holes to provide maximum brazing surface for tube to header joint, strength, and inherent flexibility. Header diameter should vary with fluid flow requirements.
 - 2. Fins shall have a minimum thickness of 0.0075 inch aluminum plate construction. Fins shall have full drawn collars to provide a continuous surface cover over the entire tube for maximum heat transfer. Tubes shall be mechanically expanded into the fins to provide a continuous primary to secondary compression bond over the entire finned length for maximum heat transfer rates. Bare copper tubes shall not be visible between fins.
 - 3. Coil tubes shall be 5/8 inch OD seamless copper, 0.020 inch nominal tube wall thickness, expanded into fins, brazed at joints.
 - 4. Coil connections shall be carbon steel, threaded connection. Connection size to be determined by manufacturer based upon the most efficient coil circuiting. Vent and drain fittings shall be

- furnished on the connections, exterior to the air handler. Vent connections provided at the highest point to assure proper venting. Drain connections shall be provided at the lowest point to insure complete drainage and prevent freeze-up.
- 5. Coil shall be furnished as an uncased galvanized steel to allow for thermal movement and slide into a pitched track for fluid drainage.

2.8 FILTERS

A. Furnish flat panel filter section with 2-inch pleated MERV 8 filter. Provide side loading and removal of filters.

2.9 ADDITIONAL SECTIONS

- A. Plenum section shall be provided and properly sized for inlet and/or discharge air flow (between 600 and 1500 feet per minute). The plenum shall provide single or multiple openings as shown on drawings and project schedule.
- B. Access section shall be provided for access between components.
- C. Economizer section shall be provided with side outside air opening and side relief air opening and right side exhaust air opening with or without parallel low leak airfoil damper blades. Dampers shall be hollow core galvanized steel airfoil blades, fully gasketed and have continuous vinyl seals between damper blades in a galvanized steel frame. Dampers shall have stainless steel jamb seals along end of dampers. Linkage and ABS plastic end caps shall be provided when return and outside air dampers sized for full airflow. Return and outside air dampers of different sizes or very large dampers and exhaust dampers must be driven separately. Damper Leakage: Leakage rate shall be less than two tenths of one percent leakage at 2 inches static pressure differential.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for steam, hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting: Install air-handling units on roofcurb using elastomeric pads. Secure units to curb.
- B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to air-handling unit to allow service and maintenance.
- C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
- D. Connect condensate drain pans using 1-1/2", ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- E. Chilled-Water Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- F. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

- 1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
- 2. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- D. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that shipping, blocking, and bracing are removed.

- 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
- 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
- 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
- 6. Verify that zone dampers fully open and close for each zone.
- 7. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
- 8. Comb coil fins for parallel orientation.
- 9. Install new, clean filters.
- 10. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm.
 - 2. Measure and record motor electrical values for voltage and amperage.
 - 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 ADJUSTING

A. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237314

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY

A. This Section includes general electrical requirements and shall apply to all phases of the work specified, indicated on the drawings or required to provide for complete installation of electrical systems.

1.3 WARRANTIES

- A. All materials, workmanship and equipment shall be warranted against defects or against injury from proper and usual wear for a period of one year after the date of substantial completion. Certain equipment shall be warranted beginning at the time of final acceptance or for longer periods of time as specified in those sections of the Project Manual. Any item which becomes defective within the warranty period shall be repaired or replaced, at no additional cost to the Owner.
- B. All manufactures warranties shall run to the benefit of the Owner. No manufacturer's warranties shall be voided or impaired.
- C. Warranty shall include repair of faulty workmanship.

1.4 ALTERNATES

A. Alternates, if required, shall be as described in the "Alternates" section of this specification, as described on the proposal form or as indicated on the drawings.

1.5 INTERPRETATION OF DOCUMENTS

- A. Any questions regarding the meaning of any portion of the contract documents shall be submitted to the Architect/Engineer for interpretation. Addenda or supplemental information will publish definitive interpretations or clarification. Verbal interpretation not issued by addendum or supplemental information shall not be considered part of the contract documents.
- B. The Architect/Engineer shall be the sole judge of interpretations of discrepancies within the contract documents.
- C. If ambiguities should appear in the contract documents, the Contractor shall request clarification from the Architect/Engineer before proceeding with the work. If the Contractor fails to make such request, no excuse will thereafter be entertained for failure to carry out the work in a manner satisfactory to the Architect/Engineer. Should a conflict occur within the contract documents, the Contractor is deemed to have estimated the more expensive way of doing the work unless a written clarification from the Architect/Engineer was requested and obtained before submission of proposed methods or materials.

1.6 DEFINITIONS ABREVIATIONS

A. The following shall apply throughout the contract documents

Code
 Furnish
 All applicable national state and local codes
 Supply and deliver to site ready for installation

3. Indicated Noted, scheduled or specified

4. Provide Furnish, install and connect complete and ready for final use by Owner

ADA Americans with Disabilities Act
 ANSI American National Standards Institute
 ASTM American Society for Testing and Materials

FM Factory Mutual System
 IRI HSB Industrial Risk Insurers

10. NEC National Electric Code (NFPA 70)

11. NEMA National Electrical Manufacturers Association

12. NFPA National Fire Protection Association13. UL Underwriters Laboratories Inc.

1.7 CODES AND STANDARDS

- A. All work shall be performed by competent craftsmen skilled in the trade involved and shall be done in a manner consistent with normal industry standards.
- B. All work shall conform to the currently adopted edition of the National Electric Code (NEC), Local Building Code, and all other applicable state and local codes or standards.
- C. Where there is a conflict between the code and the contract documents, the code shall have precedence only when it is more stringent than the contract documents. Items that are allowed by the code but are less stringent than those specified shall not be substituted.

1.8 PERMITS

A. Contractor shall become familiar and comply with all requirements regarding permits, fees, licenses, etc. All permits, licenses, inspections and arrangements required for the work shall be obtained by Contractor's effort and expense. All utilities shall be installed in accordance with the local rules and regulations and all charges shall be paid by the Contractor. Capital facilities fees will be paid by Owner.

1.9 SUBMITTALS

- A. Division 1 section "Submittals" shall be adhered to if more stringent than this section.
- B. Shop drawings shall be submitted to Architect/Engineer for review when required by other sections of this specification and for all equipment scheduled or specified on drawings.
 - 1. A letter of transmittal shall accompany each submittal. Submittals shall be numbered consecutively and list products covered.

C. Shop Drawings

1. Shop drawings include fabrication and installation drawings, diagrams, schedules of other data specifically prepared for the project. Include dimensions and notations showing compliance with specified standards.

D. Product Data

- 1. Product data includes printed information, such as manufacturer's installation instructions, catalog cuts, standard color charts, rough-in diagrams, wiring diagrams and performance curves.
- 2. Each copy shall clearly indicate conformance with specified capacities, characteristics, dimensions and details. Mark all equipment with same item number as used on drawings. Mark each copy to clearly indicate applicable choices and options.
- E. Architect/Engineer will review or take appropriate action for submittals. Review is only to determine general conformance with design shown in contract documents.
- F. Architect/Engineer review of submittals shall not relieve contractor of responsibility for deviation from requirements of the contract documents or from errors or omissions within submittals.
- G. No portion of the work requiring submittals shall be commenced until the Architect/Engineer has reviewed the submittal.
- H. See "Submittal Schedule" at the end of Section 260100 General Electrical Requirements.

1.10 OPERATION AND MAINTENANCE MANUALS

A. Assemble three (3) complete sets of operation and maintenance data indicating the operation and maintenance of each system, subsystem, and piece of equipment not part of a system. Include operation and maintenance data required in individual Specification Sections and as follows:

1. Operation Data:

- a. Emergency instructions and procedures.
- b. System, subsystem, and equipment descriptions, including operating standards.
- c. Operating procedures, including startup, shutdown, seasonal, and weekend operations.
- d. Description of controls and sequence of operations.
- e. Piping and wiring diagrams.

2. Maintenance Data:

- a. Manufacturer's information, including list of spare parts.
- b. Name, address, and telephone number of installer or supplier.
- c. Maintenance procedures.
- d. Maintenance and service schedules for preventive and routine maintenance.
- e. Maintenance record forms.
- f. Sources of spare parts and maintenance materials.
- g. Copies of maintenance service agreements.
- h. Copies of warranties and bonds.
- B. Organize operation and maintenance manuals into suitable sets of manageable size. Bind and index data in heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, with pocket inside the covers to receive folded oversized sheets. Identify each binder on front and spine with the printed title "OPERATION AND MAINTENANCE MANUAL," Project name, and subject matter of contents.

1.11 PROJECT RECORD DOCUMENTS

- A. Record Drawings: Maintain and submit one set of blue- or black-line white prints of Contract Drawings and Shop Drawings.
 - 1. Mark Record Prints to show the actual installation where installation varies from that shown originally.
 - 2. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at the same location.
 - 3. Mark important additional information that was either shown schematically or omitted from original Drawings.
 - 4. Note Construction Change Directive numbers, Change Order numbers, alternate numbers, and similar identification where applicable.
 - 5. Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
- B. Record Specifications: Submit one copy of Project's Specifications, including addenda and contract modifications. Mark copy to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
- C. Record Product Data: Submit one copy of each Product Data submittal. Mark one set to indicate the actual product installation where installation varies substantially from that indicated in Product Data.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. All materials and equipment used in the construction of the project shall be new unused and undamaged unless otherwise specified. Materials and equipment shall be of latest design standards of manufacturer specified.
- B. Materials and equipment are limited by the requirements of the contract documents. Material and equipment shall be provided in accordance with the following:
 - 1. Basis of Design Products: Basis of Design Products are those products around which the project was designed in terms of capacity, performance, physical size and quality. Basis of Design Products shall be provided unless substitutions are made in accordance with this specification.
 - 2. Substitutions: Substitutions are product of manufacturers other than listed as Basis of Design. Substitutions shall meet each of the following requirements and shall be subject to prior approval. Submissions requesting prior approval shall be received by the engineer no less than ten (10) days prior to project bid date.
 - a. The product shall be manufactured by one of the acceptable manufacturers listed in the contract documents.
 - b. The product shall meet or exceed the requirements of the contract documents in terms of quality, performance, suitability, appearance and characteristics.
 - c. The contractor providing the substitution shall bear the total cost of all changes due to substitutions. These may include but are not limited to redesign costs and increased work by other contractors or the Owner.
 - d. The Architect/Engineer shall be the sole judge of the suitability of the substitution items.
- C. Verify installation details and requirements for materials and equipment furnished by others and installed under this contract.

PART 3 - EXECUTION

3.1 DEMONSTRATION AND TRAINING

- A. Instruction: Instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system. Provide 2 hours training in up to two separate sessions.
 - 1. Provide instructors experienced in operation and maintenance procedures.
 - 2. Provide instruction at mutually agreed-on times. For equipment that requires seasonal operation, provide similar instruction at the start of each season.
 - 3. Schedule training with Owner and Architect/Engineer with at least seven days' advance notice.

3.2 STARTING AND ADJUSTING

- A. Start and test all equipment and operating components to confirm proper operation. Test and adjust all systems to achieve designed capacity and performance.
- B. Provide three (3) copies of all test report to the Architect/Engineer for review prior to date of substantial completion.
- C. All equipment and systems discrepancies shall be corrected prior to final acceptance.

3.3 TEMPORARY POWER AND LIGHTING

- A. Electric Power Service: Provide temporary electric power from Owner's electric system without payment of use charges.
- B. Electric Distribution: Provide receptacle outlets adequate for connection of power tools and construction equipment.
- C. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations and traffic conditions.

ELECTRICAL SUBMITTAL SCHEDULE

Refer to individual specification sections for additional requirements and detail on each submittal.

Costion	Soction Nome	Product	Shop	Test Reports /	14 G G G G A A A A A A A A A A A A A A A	Extra	0	O&M Record I	Demonstration /
Section	Section rame	Data	Dwgs	Quality Control	w allality	Materials	Data	Docs	Training
260100	260100 General Electrical Requirements	^	>						
260500	260500 Basic Electrical Materials and Methods	^	>						
262416	262416 Panelboards	^	>		\nearrow		Λ		
262726	Wiring Devices	^	>				Λ		
268100	268100 Fire Alarm	Λ	>		\nearrow		\wedge		\wedge

END OF SECTION 260100

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following basic electrical materials and methods and shall apply to all phases of the work specified, indicated on the drawings or required to provide for complete installation of electrical systems.
 - 1. Conduits.
 - 2. Building wire and connectors.
 - 3. Supporting devices for electrical components.
 - 4. Outlet boxes.
 - 5. Electrical identification.
 - 6. Electrical demolition.
 - 7. Work in existing buildings.
 - 8. Cutting and patching for electrical construction.
 - 9. Fire Stopping.
 - 10. Touchup painting.

1.3 MATERIAL QUALITY ASSURANCE

- A. Electrical components, devices, and accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

1.4 COORDINATION

- A. Coordinate chases, slots, inserts, sleeves, and openings with general construction work and arrange in building structure during progress of construction to facilitate the electrical installations that follow.
 - 1. Set inserts and sleeves in poured-in-place concrete, masonry work, and other structural components as they are constructed.
- B. Sequence, coordinate, and integrate installing of electrical materials and equipment with other trades.
- Coordinate location of access panels and doors for electrical items that are concealed by finished surfaces.
- D. Where electrical identification devices are applied to field-finished surfaces, coordinate installation of identification devices with completion of finished surface.

- E. Where electrical identification markings and devices will be concealed by acoustical ceilings and similar finishes, coordinate installation of these items before ceiling installation.
- F. Motors, equipment, controls, etc. shall be furnished, mounted and connected according to the following schedule unless otherwise noted (E =Electrical Contractor, M =Mechanical Contractor):

Item	Furnished By	Set in place or mounted by	Power wiring and connection by	Control Wiring and connection by
1) Equipment Motors	M	M	Е	M
2) Magnetic Motor Starters:				
a) Automatically controlled, with or	E	Е	E	M
without HOA switches. b) Automatically controlled, with or	M	M	E	M
without HOA switches and fur- nished as part of factory-wired mechanical equipment	141	W	L	141
3) Variable Frequency Drives	M	M	E	M
4) Disconnect switches, thermal over- load switches, manual operating switches				
a) Furnished as part of factory wired mechanical equipment	M	M	E	
b) Loose mounted	E	E	E	
5) Transformers				
 a) Serving 120 Volt and higher loads 	E	Е	E	
b) Serving 24 Volt control power	M(1)	M	E	M
6) Contactors	E	E	E	E
7) Push-button stations, pilot lights	Е	E	Е	E
8) Multi-speed switches	3.6		T.	3.6
a) Furnished with equipment	M	E	E	M
b) Loose mounted	E	E	E	M
9) Line voltage thermostats and time clocks.	E	Е	E	Е
10) Low voltage controls and thermostats	M	M	M	M (2)
11) Motorized valves, and float controls for tanks and sumps	M	M	E	M
12) Temperature control panels	M	M	E	M
13) Motorized control valves, damper				
motors, solenoid valves, etc.				
a) Line Voltage	M	M	E	M
b) Low Voltage	M	M	M	M
14) Factory pre-wired control/power pan- els including remote sensing devices	M	M	E	M(3)
15) Heat tape	E	E	E	E
16) Electric wall and unit heaters	E	E	E	E
17) Fire protection controls	M	M	E	E
18) Fire Smoke Dampers	3.6	3.6		3.6
a) At air handling unit (24 Volt)	M	M	M	M E(4)
b) In space (120 Volt)	M	M	E	E(4)
19) Fire and smoke detectors including relays for fan shutdown	E	Е	E	E(5)
20) Boiler and water heater controls, boiler burner control panels	M	M	E	M
- oner control puneto				

Notes:

- 1. When control power is not available, mechanical contractor shall provide control transformers as required to power all valves, dampers, etc.
- 2. Conduit rough-in for thermostats by electrical contractor.
- 3. Fan coil units, electric duct heaters, chillers, remote condensing units and heat pumps control wiring including wiring of remote sensors by mechanical. Control circuit feeders by mechanical unless shown otherwise.
- 4. Smoke dampers will be specified as 115 volt (verify) with wiring by Electrical Contractor and control from the fire alarm panel. Smoke detectors furnished by electrical contractor are required to make dampers operate.
- 5. Wiring from alarm contacts to alarm system by Electrical; control function wiring by Mechanical.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Each contractor shall make provisions for delivery and safe storage of materials. Materials shall be delivered in a timely manner to expedite the work.
- B. Protect stored piping, supplies and equipment from cold, moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

PART 2 - PRODUCTS

2.1 CONDUITS

- A. Electrical metallic tubing (EMT): ANSI C80.3 and UL 797, zinc-coated steel with steel or die cast, set-screw or compression type fittings.
 - 1. Color coded exterior for system identification:
 - a. Fire Alarm Red.
 - b. Power Silver.
 - c. Security Orange.
 - d. Communications Blue.
- B. Flexible metal conduit (FMC): UL 1, Zinc-coated steel.
- C. Intermediate metal conduit (IMC): ANSI C80.6 and UL 1242, zinc-coated steel, with threaded fittings.
- D. Liquidtight flexible metal conduit (LFMC): Flexible steel conduit with PVC jacket and complying with UL 360.
- E. Rigid nonmetallic conduit (RNC): NEMA TC 2 and UL 651, EPC-40 (schedule 40) PVC, with NEMA TC3 fittings.
- F. Installation location shall determine conduit type permitted.
 - 1. For indoor installations:
 - a. Exposed: EMT.
 - b. Concealed: EMT.
 - c. Connection to vibrating equipment: FMC; except in wet or damp locations, use LFMC.

- d. Boxes and enclosures: NEMA 250, Type 1, unless otherwise indicated.
- 2. Use the following conduits for outdoor installations:
 - a. Exposed: IMC.
 - b. Underground: RNC.
 - c. Boxes and enclosures: NEMA 250, Type 3R or Type 4.
- 3. At motors:
 - a. Connect motors and equipment subject to vibration, noise transmission, or movement with FMC of 72-inch maximum length.
 - b. Damp locations: LFMC.
- G. Conduit fittings: Specifically designed for the conduit type with which used. Comply with NEMA FB 1 and UL 514B.

2.2 CONDUCTORS

- A. Conductors and conductor insulation: Comply with NEMA WC 70.
- B. Conductors, No. 10 AWG and Smaller: Solid or stranded copper.
- C. Conductors, larger than No. 10 AWG: Stranded copper.
- D. Insulation: thermoplastic, rated at 75 deg C minimum.
 - 1. Feeders: Type THHN/THWN insulated conductors in conduit.
 - 2. Underground Feeders and Branch Circuits: Type THWN in conduit.
 - 3. Branch Circuits: Type THHN/THWN insulated conductors in conduit.
 - Circuits over 100 feet from GFCI devices and all circuits from line isolation panels: Low-leakage XHHW in conduit.
- E. Wire connectors and splices: Units of size, ampacity rating, material, type, and class suitable for service indicated.
- F. Unless otherwise indicated on the drawings, circuits are to be 20 amps with #12 AWG wire.
- G. A green ground shall be installed with all branch and feeder circuits. Unless otherwise indicated on the drawings, ground wires are to be #12 AWG.
- H. Provide a dedicated neutral conductor for each 120V and 277V branch circuit unless otherwise indicated on drawings.

2.3 SUPPORTING DEVICES

- A. Material: Cold-formed steel, with corrosion-resistant coating acceptable to authorities having jurisdiction.
- B. Metal items for use outdoors or in damp locations: Hot-dip galvanized steel.
- C. Slotted-steel channel supports: Flange edges turned toward web, and 9/16-inch- diameter slotted holes at a maximum of 2 inches o.c., in webs.

- D. Conduit and cable supports: Manufactured clevis hangers, riser clamps, straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or click-type hangers.
 - 1. In general, use the following support methods for outdoor conduit installations:
 - a. Individual exposed conduit: 1" and smaller; 2 hole straps.
 - b. Individual exposed conduit: 1-1/4" and larger; Minerallac.
 - c. Paired individual exposed conduit: Minerallac.
 - d. Rack exposed conduit: Unistrut with strut straps.
 - e. Concealed in concrete pour: Approved iron tie wire.
 - 2. In general, use the following support methods for indoor conduit installations:
 - a. Individual exposed conduit: 1" and smaller; 2 hole straps.
 - b. Individual exposed conduit: 1-1/4" and larger; Minerallac.
 - c. Individual lighting and power above lay-in ceilings: Dedicated ceiling wire with Caddy clips.
 - d. Racked exposed or concealed conduit: Unistrut with strut straps.
- E. Pipe sleeves: ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, plain ends.
- F. Expansion anchors: Carbon-steel wedge or sleeve type.
- G. Toggle bolts: All-steel springhead type.
- H. Powder-driven threaded studs: Heat-treated steel.

2.4 BOXES

- A. Hollow wall and ceiling spaces: Outlet boxes for concealed applications shall be 4" square with single or multiple gang plaster ring in round or square configuration to match the device or fixture being installed. Depth of ring shall be selected so that face of ring is recessed back from face of finished surface by approximately 1/8".
- B. Exposed exterior boxes: Where exposed boxes are required, they shall be the cast type with threaded hubs and gasketed covers. Use of these boxes is by approval only. Flush mounted boxes and conduit are to be used unless otherwise indicated.
- C. Interior junction boxes: Interior junction boxes shall be 4" square minimum with knock outs as required. Larger boxes may be required and shall be sized per NEC. Provide a flat steel coverplate.
- D. Specialty junction boxes larger than 4 11/16": Junction and pull boxes shall be sized per NEC and arranged to facilitate pulling or splicing. Boxes shall be steel without knock outs, with hinged or screw on cover plates.

2.5 ELECTRICAL IDENTIFICATION

- A. Tape markers for wire: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.
- B. Engraved-plastic labels, signs, and instruction plates: Engraving stock, melamine plastic laminate punched or drilled for mechanical fasteners 1/16-inch minimum thickness for signs up to 20 sq. in. and 1/8-inch minimum thickness for larger sizes. Engraved legend in black letters on white background.

2.6 ACCESS DOORS

A. Prime coated 14 gauge steel, flush, with screw driver operated cam lock. Frame to accommodate construction type; size as indicated.

PART 3 - EXECUTION

3.1 ELECTRICAL EQUIPMENT INSTALLATION

- A. Quality of workmanship: A neat and workmanlike installation shall be provided as defined in the National Electrical Installation Standards (NEIS) established by the National Electrical Contractors Association (NECA). NEIS standards shall be followed for all work including that which is concealed by construction
- B. Neatness and craftsmanship shall be a priority. Installations shall be subject to regular observations performed by the Engineer or the Engineer's Representative. If an installation is deemed unsatisfactory by the Engineer or the Engineer's Representative due to quality of workmanship, code conflicts or deviations from the Construction Drawings or Specifications, the Contractor shall remedy the installation to the satisfaction of the Engineer.
- C. Inspect installed components for damage and faulty work, including the following:
 - 1. Conduits.
 - 2. Building wire and connectors.
 - 3. Supporting devices for electrical components.
 - 4. Electrical identification.
 - 5. Cutting and patching for electrical construction.
 - 6. Touchup painting.
- D. Headroom maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide the maximum possible headroom.
- E. Materials and components: Install level, plumb, and parallel and perpendicular to other building systems and components, unless otherwise indicated.
- F. Equipment: Install to facilitate service, maintenance, and repair or replacement of components. Connect for ease of disconnecting, with minimum interference with other installations.
- G. Right of way: Give to conduits and piping systems installed at a required slope.

3.2 CONDUIT AND CABLE INSTALLATION

- A. Conceal conduit and cables, unless otherwise indicated, within finished walls, ceilings, and floors.
- B. Install conduit and cables at least 6 inches away from parallel runs of flues or hot-water pipes. Locate horizontal conduit runs above water piping.
- C. Use temporary conduit caps to prevent foreign matter from entering.
- D. Make conduit bends and offsets so ID is not reduced. Keep legs of bends in the same plane and straight legs of offsets parallel, unless otherwise indicated.

- E. Use conduit and cable fittings compatible with conduit and cables and suitable for use and location.
- F. Make bends in exposed parallel or banked runs from same centerline to make bends parallel. Use factory elbows where elbows can be installed parallel; otherwise, provide field bends for exposed parallel conduits.
- G. Install pull wires in empty conduits. Use No. 14 AWG zinc-coated steel or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of the pull wire.
- H. Install interior telephone and signal system conduits in maximum lengths of 150 feet and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements, in addition to requirements above.
- I. Install exterior telephone and signal system conduits in maximum lengths of 500 feet and with a minimal number of 90-degree bends.
- J. Utilize sweep elbows for all telephone and signal system conduits 2" and larger.
- K. All conduits routed through unfinished spaces shall be routed as high as allowable to avoid future conflicts with build out.
- L. All conduits routed exposed in finished spaces shall be painted to match the surroundings. Unless otherwise required by Code, this shall include fire alarm, communication, or other color-specific conduits.
- M. Route conduits parallel to building structural members in a neat and orderly manner.

3.3 CONDUIT SUPPORT INSTALLATION

- A. Install support devices to securely and permanently fasten and support electrical components.
- B. Install individual and multiple conduit hangers and riser clamps to support conduits. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assemblies and for securing hanger rods and conduits.
- C. Size supports for multiple conduits so capacity can be increased by a 25 percent minimum in the future.
- D. Install 1/4-inch diameter or larger threaded steel hanger rods, unless otherwise indicated.
- E. Simultaneously install vertical conductor supports with conductors.
- F. Separately support cast boxes that are threaded to conduits and used for fixture support. Support sheet-metal boxes directly from the building structure or by bar hangers. If bar hangers are used, attach bar to conduits on opposite sides of the box and support the conduit with an approved fastener not more than 24 inches from the box.
- G. Install metal channel racks for mounting cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices unless components are mounted directly to structural elements of adequate strength. Use factory hardware for all connections and assemblies including 45 and 90 degree attachment hardware.
- H. Install sleeves for cable and conduit penetrations of concrete slabs and walls unless core-drilled holes are used. Install sleeves for cable and conduit penetrations of masonry and fire-rated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.

Project No: 25336

Morrissey Engineering, Inc.

- I. Install PVC sleeves for grounding cable riser penetrations of concrete slabs. Where ground wires are run through metal sleeves use grounding bushings on both ends of the conduit or sleeve.
- J. Securely fasten electrical items and their supports to the building structure, unless otherwise indicated. Perform fastening according to the following unless other fastening methods are indicated:
 - 1. Masonry: Toggle bolts on hollow masonry units and expansion bolts on solid masonry units.
 - 2. New concrete: Concrete inserts with machine screws and bolts.
 - 3. Light steel: Sheet-metal screws.
 - 4. Fasteners: Select so the load applied to each fastener does not exceed 25 percent of its proof-test load.

3.4 WIRING INSTALLATION

- A. Install splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- B. Install wiring at outlets with at least 12 inches of slack conductor at each outlet.
- C. Connect outlet and component connections to wiring systems and to ground. Tighten electrical connectors and terminals, according to manufacturer's published torque-tightening values.

3.5 POSITION OF DEVICE OUTLETS

A. Outlets shall be installed at the height indicated below unless otherwise noted. All heights of outlets are measured from finished floor to centerline of device. Heights may be adjusted as necessary to clear wall mounted cabinets, fin tube convectors, unit heaters, etc. Where installed in masonry walls, mounting heights may be adjusted to correspond to block coursing. In no case shall outlets be mounted below 15" or switches above 48":

44" 1. Wall switches Receptacle outlet (general) 2.. 16" Receptacle outlet serving countertops 3. 4" above counter or top of backsplash unless otherwise noted. 4. Exterior receptacles 5. Communications outlet Match adjacent outlets. Exit lights 4" between top of door frame and bottom of exit 6. light where possible.

3.6 ELECTRICAL IDENTIFICATION

- A. Install at locations for most convenient viewing without interference with operation and maintenance of equipment.
- B. Coordinate names, abbreviations, colors, and other designations used for electrical identification with corresponding designations indicated in the Contract Documents or required by codes and standards. Use consistent designations throughout Project.
- C. Self-Adhesive Identification Products: Clean surfaces before applying.

- D. Tag and label circuits designated to be extended in the future. Identify source and circuit numbers in each cabinet, pull and junction box, and outlet box. Color-coding may be used for voltage and phase identification.
- E. Color-code 208/120-V system secondary service, feeder, and branch-circuit conductors throughout the secondary electrical system as follows:
 - 1. Phase A: Black.
 - 2. Phase B: Red.
 - 3. Phase C: Blue.
 - 4. Neutral: White.
 - 5. Ground: Green.
- F. Color-code 480/277-V system secondary service, feeder, and branch-circuit conductors throughout the secondary electrical system as follows:
 - 1. Phase A: Brown
 - 2. Phase B: Orange
 - 3. Phase C: Yellow
 - 4. Neutral: White with a colored stripe or gray
 - 5. Ground: Green.

3.7 FIRESTOPPING

- A. Apply firestopping to cable and raceway penetrations of fire-rated floor and wall assemblies to achieve fire-resistance rating of the assembly and to resist passage of smoke and other gases. Products designed to achieve a fire or smoke resistance rating shall not be used in locations where such ratings are not required by AHJ. Coordinate location requirements with other disciplines and AHJ prior to installation.
 - 1. Limit air leakage to 5.0cfm per square foot tested in accordance with UL 1479.
 - 2. Materials labeled by a qualified testing agency acceptable to AHJ.
 - 3. Comply with manufacturer's written installation instructions and published drawings
 - 4. Identify penetration firestopping with preprinted metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of firestopping edge so labels will be visible to anyone seeking to remove penetrating items or firestopping. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:
 - a. The words "Warning Penetration Firestopping Do Not Disturb. Notify Building Management of Any Damage."
 - b. Contractor's name, address, and phone number.
 - c. Designation of applicable testing and inspecting agency.
 - d. Date of installation.
 - e. Manufacturer's name.
 - f. Installer's name.
- B. All firestopping assemblies shall be from one manufacturer. Match manufacturer used by other trades or as directed by general contractor.
- C. Where electrical outlets are to be installed in fire rated walls, provide FlameSafe FSP1077 putty pads or equal to maintain adequate fire rating.
- D. Where lighting fixtures or other electrical devices are to be installed in fire rated ceilings, provide Tenmat Fire Rated Light Covers or equal to maintain adequate fire rating.

3.8 DEMOLITION

- A. Disconnect, demolish, and remove construction indicated in specifications and drawings.
- B. The Owner shall have first salvage rights to all fixtures, devices and equipment removed. Present removed materials to owner's representative. Materials not retained by owner's representative shall be removed from project site.
- C. If equipment to remain is damaged or disturbed, remove damaged portions and install new products of equal capacity and quality.
- D. Remove, store, clean, reinstall, reconnect, and make operational equipment indicated for relocation.
- E. Remove all accessible conduit unless otherwise noted.
- F. Remove branch circuit conductors and low voltage cable in area of demolition not reused in new work or planned for future use. Where left for future use, label wire at both ends and at each junction box.
- G. Power to existing areas not being remodeled shall be maintained at all times except for short term outages necessary for reconnection of existing circuits. Coordinate and schedule outages with owner.
- H. Coordinate demolition with the work of other trades. Provide temporary power as required to allow the work of other trades to proceed or as required to allow the owner to occupy the space.
- I. See architectural plans to determine project phasing requirements. Electrical circuits serving areas not under construction shall remain active until those areas are turned over to the contractor for construction.
- J. Work abandoned in place: Cut and remove underground conduit a minimum of 2 inches beyond face of adjacent construction. Cap and patch surface to match existing finish.

3.9 WORK IN EXISTING BUILDINGS

- A. Full Owner Occupancy: The Owner will occupy the site and existing building during the construction period. Cooperate with the Owner to minimize conflicts with the Owner's operations.
- B. Schedule all work in advance with the owner. Do not proceed with work without the Owner's written approval.
- C. Notify Owner of noisy operations and schedule in advance.
- D. The Owner shall have the right to direct work to secure safe and proper progress and quality of work.
- E. Do not interrupt utilities without Owner's written approval of time and duration. Interruptions shall be the minimum required for completion of work and performed during the hours of 10:00 PM-6:00 AM Monday through Friday or 6:00 PM Saturday through 6:00 AM Monday.
- F. The existing fire alarm system shall remain functional throughout the project. The Owner and the Fire Marshal shall approve required outages.
- G. The Owner shall be notified before starting welding or cutting. Fire extinguishers shall be immediately accessible when welding or cutting with an open flame or arc. Welding or cutting with an open flame or arc shall be stopped not less than one hour before leaving the premises.

- H. Existing electrical items that interfere with the proper installation new work shall be removed or relocated as required or as directed by the Architect/Engineer.
- I. Maintain downstream circuit continuity to equipment to remain active.
- J. Where breakers are indicated to be installed in existing panelboards, remove panel covers and verify all connection details prior to ordering of breakers. Provide all required hardware for installation of breakers in existing panels.

3.10 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces necessary for electrical installations. Perform cutting by skilled mechanics of trades involved.
- B. Repair cut surfaces to match adjacent surfaces.

3.11 CONSTRUCTION LAYOUT

- A. Layout work in advance of installation using data and measurements from the site, the appropriate architectural and structural drawings and shop drawings.
- B. Confirm adequate clearance for installation, operation, maintenance and code required clearance including items installed by other contractors.
- C. If layout to provide clearance is not possible, promptly notify Architect/Engineer for clarification.

3.12 DATA AND MEASUREMENTS

- A. The data given herein and on the drawings is as accurate as could be secured. The existence and location of construction as indicated is not guaranteed. Before beginning work investigate and verify the existence and location of items affecting work. Obtain exact locations, measurements, levels, etc., at the site and adapt work to actual conditions.
- B. Only Architectural drawings, Structural drawings, and site measurements may be utilized in calculations. Mechanical and electrical drawings are diagrammatic or schematic.

3.13 REFINISHING AND TOUCHUP PAINTING

- A. Refinish and touch up paint.
 - 1. Clean damaged and disturbed areas and apply primer, intermediate, and finish coats to suit the degree of damage at each location.
 - 2. Follow paint manufacturer's written instructions for surface preparation and for timing and application of successive coats.
 - 3. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 4. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.14 CLEANING AND PROTECTION

- A. On completion of installation, including outlets, fittings, and devices, inspect exposed finish. Remove burrs, dirt, paint spots, and construction debris.
- B. Protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION 260500

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes load centers and panelboards, overcurrent protective devices and associated auxiliary equipment rated 600V and less for the following types:
 - 1. Lighting and appliance branch-circuit panelboards.
- B. Related Sections include the following:
 - 1. Division 26 Section "General Electrical Requirements."
 - 2. Division 26 Section "Basic Electrical Materials and Methods."

1.3 SUBMITTALS

- A. Product Data: For each type of panelboard, overcurrent protective device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Panel designation (same as on drawings).
 - c. Bus configuration, current, and voltage ratings.
 - d. Short-circuit current rating of panelboards and overcurrent protective devices.
 - e. UL listing for series rating of installed devices.
 - f. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices, and auxiliary components.
 - g. SPD devices when integrated into equipment.
 - h. Accessories (ground bar, contactor, door lock, etc.)
 - i. Mounting (flush or surface).
 - 2. Wiring Diagrams: Diagram power, signal, and control wiring and differentiate between manufacturer-installed and field-installed wiring.
- C. Maintenance Data: For panelboards and components to include in maintenance manuals specified in Division 1. In addition to requirements specified in Division 1 Section "Contract Closeout," include the following:

- 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- 2. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.4 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements.

PART 2 - PRODUCTS

2.1 OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Electronic Trip Unit Circuit Breakers for breaker frame sizes 800 A and larger: RMS sensing; field-replaceable rating plug; with the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - 3. GFCI Circuit Breakers: Single- and two-pole configurations with 5mA trip sensitivity.
- B. Molded-Case Circuit-Breaker Features and Accessories. Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and material of conductors.
 - 2. Application Listing: Appropriate for application; Type HACR for heating, air-conditioning, and refrigerating equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install panelboards and accessories according to NEMA PB 1.1.
- B. Circuit Directory: Create a directory to indicate installed circuit loads after balancing panelboard loads. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Wiring in Panelboard Gutters: Arrange conductors into groups and bundle and wrap with wire ties after completing load balancing.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Basic Electrical Materials and Methods"

3.3 CONNECTIONS

- A. Install equipment grounding connections for panelboards with ground continuity to main electrical ground bus.
- B. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values.

3.4 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Balancing Loads: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes as follows:
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data-processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.5 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.6 CLEANING

A. On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION 262416

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes receptacles, connectors, switches, and finish plates.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. DL: Damp location as defined in NFPA 70, Article 100.
- C. WP: Weatherproof for wet locations as defined in NFPA 70, Article 100.

1.4 SUBMITTALS

A. Product Data: For each product specified.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- B. Comply with NEMA WD 1.
- C. Comply with NFPA 70.

1.6 COORDINATION

- A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 1. Cord and Plug Sets: Match equipment requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Other Wiring Devices

- a. Bryant Electric, Inc.
- b. Cooper Wiring Devices.
- c. Hubbell, Inc.; Wiring Devices Div.
- d. Leviton Manufacturing Co., Inc.
- e. Pass & Seymour/Legrand; Wiring Devices Div.

2.2 RECEPTACLES

- A. Description: Impact-resistant nylon face with finder groove, thermoplastic back body, and one-piece triple-wipe power contacts. Side and back wired, back wire terminals use screw pressure plates.
- B. Duplex Straight-Blade Receptacles: Specification grade; 20 ampere, 125 volt rated.
 - 1. Equal to: Pass & Seymour #5362
- C. GFCI Receptacles: Design units for installation in a 2-3/4-inch deep outlet box without an adapter.
 - 1. Equal to: Pass & Seymour #2097.
- D. Weather-Resistant Duplex Receptacle: Specification grade, 20 ampere, 125 volt rated.
 - 1. Equal to: Pass & Seymour #WR5362
- E. Tamper Resistant Receptacles: Specification grade; 15 ampere, 125 volt rated.
 - 1. Tamper resistant with thermoplastic shutter. Shutter in closed position covers access to contacts, insertion of object into any one side of outlet does not open shutter. Two-bladed plug or grounding plug compresses spring and simultaneously opens both shutters.
 - 2. Equal to: Pass & Seymour #TR62.

2.3 CORD AND PLUG SETS

- A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with type SOW-A jacket. Green-insulated grounding conductor, and equipment-rating ampacity plus a minimum of 30 percent.
 - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.4 SWITCHES

- A. Snap Switches: Specification grade; 20 ampere, 120/277 volt rated; side and back wired; quiet type.
 - 1. Poles: Provide switches in single-pole, double-pole, three-way, and four-way configurations as indicated on the drawings.
 - 2. Equal to: Pass & Seymour #20AC

2.5 WALL PLATES

- A. Single and combination types match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.04-inch thick, Type 302, satin-finished stainless steel.
 - a. Ceiling mounted wall plates to match ceiling color.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Weatherproof while-in-use plates in wet locations (WP): Self-closing white non-metallic flat flush cover integral to one-piece non-metallic backbox for full recess mounting in building exterior, the integrity of which is not affected when the attachment plug cap is inserted. Equal to Arlington Industries Low Profile In-Box, select box and trim types to coordinate with building materials at installed location.

2.6 FINISHES

A. Color:

- 1. Gray, unless otherwise indicated for normal circuits.
 - a. Ceiling mounted devices to match ceiling color.

2.7 CIRCUIT LABELS FOR RECEPTACLES

A. Brother PC clear adhesive with Arial #14 black lettering for normal circuits.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install devices and assemblies plumb and secure.
- B. Install wall plates when painting is complete.
- C. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical, and grounding terminal of receptacles on bottom. Group adjacent switches under single, multigang wall plates.
- D. Protect devices and assemblies during painting.
- E. Provide a GFCI receptacle for each device indicated on the drawings. Do not connect GFCI receptacles to protect downstream devices.
- F. Provide tamper resistant devices where required by NEC 406.12. Tamper resistant receptacle locations are not indicated on the drawings.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Basic Electrical Materials and Methods."

- 1. Switches: Where three or more switches are ganged, and elsewhere as indicated, identify each switch with approved legend engraved on wall plate.
- 2. Receptacles: Identify serving panelboard and circuit number on faceplate of all receptacles.
- 3. Conductors Serving Receptacles: Identify serving panelboard and circuit number. Use durable wire markers or tags within outlet boxes.

3.3 CONNECTIONS

- A. Connect wiring device grounding terminal to outlet box with bonding jumper.
- B. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor.
- C. Tighten electrical connectors and terminals according to manufacturers published torque-tightening values.

3.4 FIELD QUALITY CONTROL

- A. Test wiring devices for proper polarity and ground continuity.
- B. Test GFCI operation with fault simulations according to manufacturer's written instructions.
- C. Replace damaged or defective components.

3.5 CLEANING

A. Internally clean devices, device outlet boxes, and enclosures. Replace stained or improperly painted wall plates or devices.

END OF SECTION 262726

SECTION 268100 - FIRE ALARM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes fire alarm systems with control panel, manual stations, detectors, signal equipment, controls, and devices.
- B. This Section includes fire alarm systems for the following:
 - 1. Addition of existing fire alarm systems.

1.3 DEFINITIONS

- A. FACP: Fire alarm control panel.
- B. LED: Light-emitting diode.
- C. Definitions in NFPA 72 apply to fire alarm terms used in this Section.

1.4 SYSTEM DESCRIPTION

- A. General: Noncoded, analog-addressable system; automatic sensitivity control of certain smoke detectors; and multiplexed signal transmission dedicated to fire alarm service only.
 - 1. Interface with existing fire alarm system.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Drawings: Prepare project specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed media.
 - 2. Wiring Diagrams: Detail wiring and differentiate between manufacturer-installed and field-installed wiring. Include diagrams for equipment and for system with all terminals and interconnections identified.
- C. Operating Instructions: For mounting at the FACP.

- D. Submissions to Authorities Having Jurisdiction: Submit to authorities having jurisdiction. Include copies of annotated Contract Drawings as needed to depict component locations to facilitate review. Resubmit if required to make clarifications or revisions to obtain approval. On receipt of comments from authorities having jurisdiction, submit them to Engineer for review.
- E. Certificate of Completion: Comply with NFPA 72.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer who is an authorized representative of the FACP manufacturer for both installation and maintenance of units required for this Project.
- B. Manufacturer Qualifications: A firm experienced in manufacturing systems similar to those indicated for this Project and with a record of successful in-service performance.
- C. Source Limitations: Obtain fire alarm system components through one source from a single manufacturer.
- D. Compliance with Local Requirements: Comply with applicable building code, local ordinances and regulations, and requirements of authorities having jurisdiction.
- E. Comply with NFPA 72.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Honeywell

2.2 PERFORMANCE REQUIREMENTS

A. Comply with NFPA 72.

2.3 SMOKE DETECTORS

- A. General Description:
 - 1. UL 268 listed, operating at 24-V dc, nominal.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
 - 3. Piezoelectric sounder rated at 88 dBA at 10 feet according to UL 464.
 - 4. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plugin module that connects to a fixed base. Provide terminals in the fixed base for connection of building wiring.
 - 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 6. Integral Visual-Indicating Light: LED type. Indicating detector has operated and power-on status.

B. Duct Smoke Detectors:

- 1. Photoelectric Smoke Detectors:
 - a. Sensor: LED or infrared light source with matching silicon-cell receiver.
 - b. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.
- 2. UL 268A listed, operating at 24-V dc, nominal.
- 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
- 4. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plugin module that connects to a fixed base. The fixed base shall be designed for mounting directly to the air duct. Provide terminals in the fixed base for connection to building wiring.
- 5. Self-Restoring: Detectors shall not require resetting or readjustment after actuation to restore them to normal operation.
- 6. Integral Visual-Indicating Light: LED type. Indicating detector has operated and power-on status. Provide remote status and alarm indicator and when required by code.
- 7. Each sensor shall have multiple levels of detection sensitivity.
- 8. Sampling Tubes: Design and dimensions as recommended by manufacturer for the specific duct size, air velocity, and installation conditions where applied.
- 9. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit.

2.4 ADDRESSABLE INTERFACE DEVICE

- A. Description: Microelectronic monitor module listed for use in providing a system address for listed alarm-initiating devices for wired applications with normally open contacts.
- B. Integral Relay: Capable of providing a direct signal to the elevator controller to initiate elevator recall to a circuit-breaker shunt trip for power shutdown, open smoke damper control circuits, open magnetic door holder circuits, etc.

2.5 WIRE

- A. NFPA 70, Types FPL, FPLR, or FPLP, as recommended by manufacturer.
- B. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Connect the FACP with a disconnect switch or breaker with breaker lock.
- B. Mount FACP and annunciator with top of cabinets not more than 72" above the finished floor.
- C. Manual Pull Stations: Mount semi-flush in recessed back boxes.
- D. Water-Flow Detectors and Valve Supervisory Switches: Connect for each sprinkler valve station required to be supervised.

- E. Ceiling Mounted Fire Alarm Devices in Accessible Ceilings: Use flexible metal conduit whip from EMT conduit to ceiling tile to facilitate device relocation in the future and allow device to mount flush to ceiling tile.
- F. Ceiling-Mounted Smoke Detectors: Not less than 4 inches from a sidewall to the near edge.
- G. Wall-Mounted Smoke Detectors: At least 4 inches, but not more than 12 inches, below the ceiling.
- H. Smoke Detectors near Air Registers: Install no closer than 60 inches.
- I. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Combine audible and visible alarms at the same location into a single unit.

3.2 WIRING INSTALLATION

- A. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by the manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- B. Cable Taps: Use numbered terminal strips in junction, pull and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- C. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- D. Install in conduit.

3.3 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals according to Division 26 Section "Basic Electrical Materials and Methods."
- B. Install instructions frame in a location visible from the FACP.
- C. Paint power-supply breaker red and lock. Label "FIRE ALARM."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and connections and to supervise pretesting, testing, and adjustment of the system. Report results in writing.
- B. Final Test Notice: Provide a minimum of 10 days' notice in writing when the system is ready for final acceptance testing.

- C. Minimum System Tests: Test the system according to procedures outlined in NFPA 72. Minimum required tests are as follows:
 - 1. Verify the absence of unwanted voltages between circuit conductors and ground.
 - 2. Test all conductors for short circuits using an insulation-testing device.
 - 3. With each circuit pair, short circuit at the far end of the circuit and measure the circuit resistance with an ohmmeter. Record the circuit resistance of each circuit on record drawings.
 - 4. Verify that the control unit is in the normal condition as detailed in the manufacturer's operation and maintenance manual.
 - 5. Test initiating and indicating circuits for proper signal transmission under open circuit conditions. One connection each should be opened at not less than 10 percent of initiating and indicating devices. Observe proper signal transmission according to class of wiring used.
 - 6. Test each initiating and indicating device for alarm operation and proper response at the control unit. Test smoke detectors with actual products of combustion.
 - 7. Test the system for all specified functions according to the approved operation and maintenance manual. Systematically initiate specified functional performance items at each station, including making all possible alarm and monitoring initiations and using all communications options. For each item, observe related performance at all devices required to be affected by the item under all system sequences. Observe indicating lights, displays, signal tones.
 - 8. Test Both Primary and Secondary Power: Verify by test that the secondary power system is capable of operating the system for the period and in the manner specified.
- D. Retesting: Correct deficiencies indicated by tests and completely retest work affected by such deficiencies. Verify by the system test that the total system meets Specifications and complies with applicable standards.

3.5 CLEANING AND ADJUSTING

A. Cleaning: Remove paint splatters and other spots, dirt, and debris. Touch up scratches and marred finish to match original finish. Clean unit internally using methods and materials recommended by manufacturer.

3.6 ON-SITE ASSISTANCE

A. Occupancy Adjustments: When requested within one year of date of Substantial Completion, provide onsite assistance in adjusting sound levels, controls, and sensitivities to suit actual occupied conditions. Provide up to two requested visits to Project site for this purpose.

END OF SECTION 268100